Numerical Analysis and Simulation II: Partial Differential Equations (PDEs)

Exercise Sheet 9 - Weak formulation, Ansatz spaces

Return of Exercise Sheet: June 28, 2012 (before the lecture)

Homework 24:

In the lecture course we considered the boundary value problem

$$
\begin{aligned}
-u^{\prime \prime}+\alpha u^{\prime}+u & =f, \quad x \in(0,1) \\
u^{\prime}(0)=u^{\prime}(1) & =0
\end{aligned}
$$

with ($\alpha=1$) and derived a weak formulation with a non-symmetric, continuous und coercive bilinear form.

1. Let $\alpha=1$. Argue why there exist exactly one weak solution $u \in H^{1}(0,1)$ if $f \in L^{2}(0,1)$.
2. Show: If $\alpha \in \mathbb{R}$ is sufficiently large, then the associated bilinear form is no longer coercive on $H^{1}(0,1)$.

Homework 25:

Consider the boundary value problem

$$
-\left(a(x) u^{\prime}\right)^{\prime}=0, \quad x \in(-1,1), \quad u(-1)=3, u(1)=0
$$

with

$$
a(x)= \begin{cases}1, & -1 \leq x<0 \\ 0.5, & 0 \leq x \leq 1\end{cases}
$$

State a weak Formulation of this problem and determine its solution.

Homework 26: weak formulation
Let Ω be a bounded domain with smooth boundary $\partial \Omega$, where $\partial \Omega=\Gamma_{1} \cup \Gamma_{2}, \Gamma_{1} \cap \Gamma_{2}=\emptyset$. Let c, f, g, p, q be continuous. Define $V:=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\Gamma_{1}\right\}$.
The function $u \in H^{1}(\Omega)$ with $u=g$ on Γ_{1} fulfills the weak formulation

$$
\int_{\Omega} \nabla u \nabla v+c u v d x+\int_{\Gamma_{2}}(p u-q) v d s=\int_{\Omega} f v d x \quad \text { für alle } v \in V \text {. }
$$

Additionally, let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$.
State the associated classical problem and prove that u is a solution.

Lab-Exercise 4: Linear Finite Elements

Consider the boundary value problem

$$
-\left(a(x) u^{\prime}\right)^{\prime}=1, \quad x \in(-1,1), \quad u(-1)=u(1)=0
$$

with

$$
a(x)= \begin{cases}1, & -1 \leq x<0 \\ 0.5, & 0 \leq x \leq 1\end{cases}
$$

1. Discretize the boundary value problem using linear finite elements on a uniform grid with the step size h.
2. State the resulting linear system.
3. Solve the linear system for the step sizes $h=1 / 10,1 / 20$ and plot the solution.
