Bergische Universität Wuppertal
Fachbereich Mathematik und Naturwissenschaften
Angewandte Mathematik - Numerische Analysis (AMNA)
People
Research
Publications
Teaching
Publications "Machine Learning for Numerical Analysis"
Summary
Text
References
T. Kossaczká, M. Ehrhardt and M. Günther,
Deep FDM: Enhanced finite difference methods by deep learning
, Preprint 23/06, April 2023.
T. Kossaczká, M. Ehrhardt and M. Günther,
A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations
, Physics of Fluids, Vol. 34, Issue 2, (2022), 026604. DOI: 10.1063/5.0078397 (open access)
T. Kossaczká, M. Ehrhardt and M. Günther,
Enhanced fifth order WENO Shock-Capturing Schemes with Deep Learning
, Results in Applied Mathematics (2021), 100201. DOI: 10.1016/j.rinam.2021.100201 (open access).
T. Kossaczká, M. Ehrhardt and M. Günther,
A Deep Smoothness WENO Method with Applications in Option Pricing
, in: M. Ehrhardt and M. Günther (eds.),
Progress in Industrial Mathematics at ECMI 2021
, The European Consortium for Mathematics in Industry, Springer, 2022, pp 417-423. DOI: 10.1007/978-3-031-11818-0_54.
Talks related to the Project
M. Ehrhardt,
Deep Smoothness WENO Method with Applications in Finance
MMEI 2021 conference, Smolenice, Slovakia, September 17, 2021.
M. Ehrhardt,
Enhanced fifth order WENO Shock-Capturing Schemes with Deep Learning
COST Action, Seminar of WP 5, 2021.
University of Wuppertal
Faculty of Mathematics and Natural Sciences
Department of Mathematics
Applied Mathematics & Numerical Analysis Group
Last modified:
Disclaimer
ehrhardt@math.uni-wuppertal.de