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This course is an introduction to the Partial Di�erential Equations (PDE) Tool-
box for MATLAB. In order to follow it, a minimal knowledge of MATLAB is
necessary. In the introduction you learn about the problem class solved by the
toolbox. Three examples guide you through the process of de�ning, solving and
visualizing the results of interesting engineering and scienti�c problems.

Introduction

The PDE Toolbox solves Partial Di�erential Equations (PDE) that arise in
engineering or scienti�c applications. These problems are posed on domains
with complicated geometries which can be discretized only on unstructured
meshes. The manipulation of unstructured meshes and the discretization of
di�erential equations on such meshes are by no means trivial.

With the PDE Toolbox you solve the equation (in the unknown u):

�r � (cru) + au = f;

on a bounded two-dimensional domain. The boundary conditions are prescribed
values of the solution u and its derivatives. The toolbox also supports many gen-
eralizations of the basic equation: systems of equations, matrix valued c, time-
dependent equations, nonlinear coe�cients, and eigenvalue problems. These
equations are general enough to model many physical phenomena, such as:
structural mechanics, electrostatics, magnetostatics, AC power electromagne-
tics, DC conductive media, heat transfer, di�usion, wave propagation, etc.
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The logic of the PDE Toolbox follows the natural steps for solving equations:

� Draw the domain

� Set up the boundary conditions

� De�ne the equations

� Generate the mesh

� Discretize the equations and solve on the mesh

� Plot the results

The PDE Toolbox lets you navigate easily through these steps. You are at
liberty to return any number of steps back to e.g., rede�ne a boundary condition,
change the mesh, etc.

The Graphical User Interface (GUI) provides an advanced drawing tool and a
menu-driven interface that assists you in all the steps. Using set operations
you can build the domain out of simple pieces. Complex boundary conditions
can be de�ned. Several application modes help you de�ne the problem in the
speci�c terms of application. A wide array of plotting facilities allows you to
postprocess, visualize and extract interesting information from your solution.

At any point you can leave the GUI and enter the workspace with your results.
There you have the full exibility of the MATLAB computing environment and
access to the functions forming the PDE Toolbox in order to further process
your results. The e�ect is that you do not \see" the tedious and very technical
details of unstructured mesh manipulation, but rather enjoy its bene�ts in a
comfortable MATLAB environment.

Example 1: The Wrench

The aim of this exercise is to familiarize you with the GUI. It also demonstrates
a speci�c application mode, a system of two equations, plots, and adaptive
re�nement.

You are supposed to compute the displacements and stresses in a simpli�ed, 2-
dimensional wrench that is �xed around a bolt and is loaded with a certain force
in in the handle, in the same plane. The unknowns u and v are displacements,
in the x and y directions. Also assume that all the stresses lie in the same plane
as the wrench.

The wrench is modeled by an elliptic system and the boundary conditions specify
displacements (Dirichlet) or surface tractions (Neumann).
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Start with some preliminaries.

� Start by invoking the GUI via the command pdetool. You are in the
Generic Scalar applications mode (at the right end of the Toolbar). A
click on this pop-up menu displays the ten applications mode out of which
you choose Structural Mech., Plane Stress.

� From the Options menu, select the Grid and Snap menu items.

The wrench is represented by the union of a rectangle (body), a square (handle)
and a circle (head). The \claws" are obtained by cutting out a square.

� Press the button marked with a rectangle (left-most on the Toolbar). Cre-
ate the wrench body by clicking the corner (-0.5 , -0.2) and then dragging
to (0.5 , 0.2). This object is automatically labeled R1.

� Create the handle by pressing the left-most button on the Toolbar (marked
with a rectangle), clicking at (0.5 , -0.2), and dragging to (1 , 0.2). The
handle is marked R2.

� To create the wrench head, press the button marked with a centered el-
lipse. Using the right mouse button, click at (-0.5 , 0), and then drag away
until you create a circle that touches the height 0.4 (on the vertical axis).
The circle is marked C1.

� Complete the drawing by creating a rectangle with the corners (-1 , -0.2)
and (-0.5 , 0.2), marked R3.

Your have three rectangles, R1, R2, R3, and a circle C1. The PDE Toolbox
�gure looks like the following:
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Next use set algebra to cut out the square R3 from the union of R1, R2 and C1.

� Edit the set formula to: (R1+R2+C1)-R3, followed by pressing the Enter
key. The e�ect is cutting out the R3 block from the union of the �rst
three blocks.

A click on the button marked @
 sets you in the Boundary mode. The geomet-
rical objects are replaced by their boundaries. Note that there are subdomain
borders (drawn gray). The subdomain border separating the handle from the
body is useful and you should not remove it. The other three subdomain bor-
ders (drawn in gray at the head) have no signi�cance for the wrench and you
should remove them.

� Click on one of the subdomain borders in the head. After its color changes
to black, pressing the Shift key, click on the other two subdomain bor-
der segments. Then choose the Remove Subdomain Border option of the
Boundary menu.

You obtain the following PDE Toolbox window:

� Choose the Specify Boundary Conditions option from the Boundary

menu. The Boundary Condition dialog box pops up. Select Neumann
conditions and let all the coe�cients be zero (their default value). Press
the OK button to con�rm.

� Click on one of the three edges de�ning the wrench \claws", i.e., an edge
of the rectangle R3 cut out using the set formula. Pressing the Shift key,
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click on the other two edges and then choose again the Specify Boundary
Conditions option from the Boundary menu. In the Boundary Condition
dialog box, set Dirichlet boundary conditions with default values (no dis-
placements), as that part of the boundary is �xed. Press OK to con�rm.

Next you specify the equation coe�cients: Young's modulus, Poisson ratio,
loads etc.

� From the PDE menu, �rst choose PDE mode and then check the Show
Subdomain Labels options.

Your PDE Toolbox �gure will look like the following, perhaps with re-
versed subdomain numbering:

� Double-click in the handle (region 1 in our �gure). The PDE Speci�cations
dialog box appears. Edit the Ky �eld (Volume force, y-direction) and set
it to -10. We are content with the default material qualities of the wrench.
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� Press the = button to perform three tasks: to initialize the mesh, compute
the solution and plot.

The colors represent the displacements in the x direction. This representation
is not very relevant.

The information is graphically enhanced by the right plot style. In this case,
the size of the displacements, in both directions, are easier to visualize in a
deformed mesh plot.
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� From the Plot menu choose the Parameters... option. In the Plot Se-
lection window, choose the Deformed mesh Plot type to represent de-
formations in both directions, and the Color and Contour Plot types to
represent some other interesting property of the solution. Choose the von
Mises stresses from the Property pop-up menu corresponding to the Color
Plot type.

Pressing the Plot button produces the following �gure:

This plot is much more informative than the previous one. Note that the dis-
placements are enhanced, their real size is to be read from the previous plot.
The shape of the level lines in the von Mises stress suggests that the resolution
of the discretization is not �ne enough.

� Re�ne the mesh by pressing the uniform re�nement button (between the
� and the = buttons). Re�ne once again and then solve the equations
using the = button of the Toolbar.

The results seem more trustworthy, but the computing time is rather large.
Further re�ne-and-solve iterations seems an expensive strategy.

Now try an adaptive mesh generation.

� Initialize the mesh by pressing the � button on the Toolbar.

� In the Solve menu, choose the Parameters... option which opens the Solve
Parameters dialog box. Check the Adaptive mode option and press the
OK button.
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� Solve again and plot the results pressing the = button in the Toolbar.

To visualize the mesh, choose Parameters... in the Plot menu and then turn o�
the Color and Contour Plot types in the Plot Selection dialog box. Press Plot
to obtain the following �gure:

Note that the mesh is strongly re�ned in those regions where the stresses are
large. This yields the same accuracy as a �ne-resolution mesh on the whole do-
main at a fraction of the computational costs. Indeed, there are 1,030 triangles,
some at the eighth level of re�nement. Uniform re�nement to the same level
produces 1,605,632 triangles!

The exact solution has singularities at two of the \corners" and thus point-wise
convergence cannot be obtained. These singularities induce an error in the solu-
tion on the neighboring triangles which is detected by an error-estimator. The
adaptive algorithm will re�ne only those triangles with large errors, producing
very �ne triangles around the corners. A solution within a given tolerance at all
nodes can never be produced. The adaptive algorithm tries to localize the large
errors in a microscopic region around the singularities. At all the other nodes,
the solution comes within the prescribed tolerance.

A realistic wrench is implemented in the model wrench. You can run this model
using the Open option in the File menu and then selecting wrench.m. Selecting
Draw Mode shows how the realistic wrench is de�ned.
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Example 2: The Magnet

The second example gives you an insight into nonlinear problems, more complex
plots, and a more advanced usage of adaptivity.

A simple electro-magnet is a metal core (a ferro-magnetic material such as iron),
surrounded by an electrical current (usually traveling through a copper coil).

Consider a long core and neglect the end e�ects. Thus you can restrict the study
of the magnet to a plane section, governed by the equation for the magnetic
potential A:

r �

�
1

�
rA

�
+ J = 0;

where J is the current density, and � is the magnetic permeability (a nonlinear
function of rA in the case of ferro-magnetic materials, otherwise a constant).

You are requested to �nd the magnetic potential level lines and check that
reversing the current in the coil reverses the magnetic �eld.

The computational domain is a simple, unit square region. The core and the
coil are small rectangles. These de�ne subdomains, used to specify the data �
and J .

� From the File menu, choose the New option.

� Turn to the Magnetostatics application mode.

� In the Options menu, choose the Grid Spacing option. In the dialog
box, turn o� both Auto buttons. The electro-magnet is much smaller
than the whole domain, so you need some �ner detail to draw it. Edit
the X-axis extra ticks by writing 0.2. Then edit the Y-axis extra ticks by
adding 0.1 0.05. Press the Apply and Done buttons and remark the extra
grid-lines on the drawing surface.
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� De�ne two rectangles, R1 and R2, and a square SQ1 as in the following
�gure:

Use the button marked with a centered rectangle (second from the left
on the Toolbar). Click (with the left button) in the origin (0 0) and drag
towards (0.2 0.05) to create R1. Repeat the procedure dragging up to
(0.2 0.1) to create R2. Finally, using the right mouse button, click in the
origin and drag towards (1 1) to create SQ1.

� Dirichlet boundary conditions (i.e., the far away magnetic potential is
zero) are default, so you can enter PDE Mode:

� From the PDE menu, �rst choose the PDE Mode option and then check
the Show Subdomain Labels option.
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Apart from a possible di�erent numbering of the subdomains, the PDE Toolbox
�gure will look like the following:

Region 2 is air, region 4 is the ferro-magnetic core, and regions 1 and 3 are the
parts of the coil.

� Double-click in each region to pop-up the corresponding PDE Speci�cation
dialog box. Set the current J to zero in air and core (regions 2 and 4),
and +1 and -1 in the two parts of the coil (regions 1 and 3). The magnetic
permeability � (mu) is unit-size except for the core (region 4), where it has
a slightly non-linear expression:

� = 200 +
5000

1 + 0:05jrAj2

In the PDE Toolbox notation, the components of rA are ux and uy. Thus
you complete the mu �eld with:

200+5000./(1+0.05*(ux.^ 2+uy.^ 2))

The dialog boxes are closed pressing the OK button.

� In the Plot menu choose the Parameters... option and in the Plot Para-
meters dialog box check the contour Plot type. Press the button marked
Done.

� Initialize the mesh by pressing the � button on the Toolbar.

� In the Solve menu choose the Parameters... option. In the Solve Para-
meters dialog box, turn on the adaptive and nonlinear modes. Set the
maximum number of triangles to 750 and then press the OK button.
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� Press the = button in the Toolbar to solve the equation and plot the
results. Note that the level lines are not really smooth in the regions
where the triangles are large. This is due to the linear interpolation in
each triangle.

� Turn o� the adaptive mode (Solve Parameters box from the Parameters...
option of the Solve menu)

� Do a uniform re�nement by pressing the appropriate button in the Toolbar
(between the � and = buttons).

� Press the = button for another solve. A pleasing and well-known result is
obtained:

Finally check that reversing the current in the coil switches the magnet's poles.
You need an arrow plot of the magnetic �eld.

� Check the Arrows Plot type in the Plot Selection window and set the
corresponding Property to magnetic �eld. Deselect the Color Plot type.

� Press the Plot button and note that the magnetic �eld is oriented from
left to right in the core.

� Choose the PDE Mode option of the PDE menu. Double-click in regions
3 and 4 and reverse the signs of J .

� Solve by pressing the = button and note if the magnetic �eld is reversed.
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� Press the Zoom button (marked by a magnifying glass) in the Toolbar and
select a small region around the magnet.

For a more advanced modeling example, run magnet. It describes the magnetic
�eld inside an electric motor.

Example 3: The Drums

The purpose of this exercise is to demonstrate the eigenvalue solver, and some
possibilities for exporting data to the MATLAB environment (your workspace)
and doing further post-processing.

The model of a drum is an oscillating surface. The tones (frequencies) emitted
by the drum are the eigenvalues of the Laplace operator �u = �u. Note that
both the displacements u and the eigenvalues � are unknown. The surface has no
displacement at the edge, so all drums have homogeneous Dirichlet boundary
conditions. If two di�erent drums should sound the same, they must have
identical sets of eigenvalues �, hence the question: Can one hear the shape of a
drum? (posed in 1966 by Mark Kac and answered for the �rst time in 1992.)
The answer is negative since there are examples of so-called isospectral regions,
i.e., distinct surfaces such that the Laplace operators have precisely the same
eigenvalues.

The purpose of this exercise is to study numerically two drums that sound the
same. You compute the �rst six eigenvalues on a coarse, a �ne, and an even �ner
mesh. Richardson extrapolation will give corrected values, which you compare.



14 1995 MATLAB Conference

Two such drums are found in the model �les drum1.m and drum2.m. Both these
�les comes with the PDE Toolbox.

� From the File menu, select the New Option. Then type the command
drum1 at the MATLAB command prompt.

� Open the Plot Selection dialog box (Parameters... option in the Plot

menu) and deselect the Contour Plot type.

� Copy the solution to your workspace. In the Solve menu, choose the
Export Solution option. In the Export dialog box, edit the variable names
u l to u l11. The �rst 6 eigenvalues are now contained in the vector l11
in your workspace.

� Re�ne, solve and export the new solution under the names u l12.

� Re�ne once more, solve and export the new solution under the names u
l13.

� From the command line, compare the eigenvalues corresponding to the
three meshes. The numerical eigenvalue �h di�ers from the exact eigen-
value � like

�h � �+ c1h
4=3 + c2h

2 + � � � ;

where h is the mesh parameter describing the length of the typical trian-
gles. Since we have three meshes with the parameters h, h=2, and h=4,
and three corresponding numerical eigenvalues �h, �h=2, and �h=4, we can
solve for the \unknowns" �, c1, and c2. This procedure yields a linear
system 2

4 1 1 1

1 (1=2)4=3 (1=2)2

1 (1=4)4=3 (1=4)2

3
5
2
4 �

c1
c2

3
5 =

2
4 �h

�h=2
�h=4

3
5 :

In your command window you should have:

>> l1new=[1 0 0]*inv(A)*[l11 l12 l13]';

>> [l11 l12 l13 l1new']

ans =

2.5918 2.5552 2.5437 2.5379

3.7361 3.6798 3.6632 3.6554

5.3435 5.2250 5.1909 5.1757

6.7310 6.5880 6.5509 6.5373

7.5131 7.3210 7.2691 7.2483

9.5732 9.3034 9.2341 9.2093
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where A is the Richardson extrapolation matrix.

The solution corresponding to the �rst eigenvalue (fundamental note) is given
in the plot below:

Now you draw a second drum, not similar to the �rst one.

� From the File menu, select the New Option. Then type the command
drum2 at the MATLAB command prompt.

� Deselect the contour lines plotting option.

� Export the solution under the names u l21.



16 1995 MATLAB Conference

� Re�ne, solve again, and export the new result as u l22.

� Finally, re�ne, solve and export the solution as u l23.

The �rst eigenmode of the second drum is plotted in the next �gure:

Finally, compare the Richardson extrapolation results for the �rst six eigenvalues
of the two domains and note that they agree to three-four decimal places.

>> l2new=[1 0 0]*inv(A)*[l21 l22 l23]';

>> [l1new ; l2new ]

ans =

2.5379 3.6554 5.1757 6.5373 7.2483 9.2093

2.5379 3.6555 5.1755 6.5372 7.2482 9.2093
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The fact that the corrected values are closer to each other con�rm both the
dependence of the error on the mesh size and the fact that the two drums sound
the same! In fact, the eigenvalues are known to 10 decimal places (T. Driscoll,
Eigenmodes of isospectral drums, 1995). Compared with these, we have the
following relative error in the direct computations on the three meshes and the
improved, extrapolated results:
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