Modellierung von Lawinenbewegungen Die Savage-Hutter-Gleichungen

Lars Lubkoll

14. Dezember 2007

Lars Lubkoll Modellierung von Lawinenbewegungen

Image: A math a math

Inhaltsverzeichnis

1 Transformation in neues Koordinatensystem

- 2 Exakte Lösungen der Savage-Hutter-Gleichungen
 - Parabolic cap solution
 - M-Welle
 - Schock-Welle
- 3 weitere exakte Lösungen
- 4 Konsequenzen f
 ür numerische L
 ösungen

5 Quellen

A (1) > (1) > (1)

Die Savage-Hutter-Gleichungen

Gleichungen (I)

$$\frac{\partial \bar{h}}{\partial t} + \frac{\partial}{\partial x} (\bar{h}\bar{u}) = 0 \frac{\partial \bar{u}}{\partial t} + \bar{u} \frac{\partial \bar{u}}{\partial x} = (\sin\zeta - \tan\delta \operatorname{sgn}(\bar{u})\cos\zeta) - \beta \frac{\partial \bar{l}}{\partial x}$$

 $\beta = \epsilon \textit{k}_{\textit{actpass}} \textit{cos} \zeta$

Randbedingungen

$$h(x, t) = h_F x = x_F(t)$$

$$h(x, t) = h_R x = x_R(t)$$

・ロト ・日本 ・モート ・モート

Transformation in neues Koordinatensystem

Exakte Lösungen der Savage-Hutter-Gleichungen weitere exakte Lösungen Konsequenzen für numerische Lösungen Quellen

neues Koordinatensystem

・ロト ・回ト ・ヨト

-≣->

neues Koordinatensystem

Ortskoordinate und relative Geschwindigkeit

 $\eta = x - \frac{\xi}{g(t)}$ $\tilde{u} = u - u_0(t)$

$$\begin{split} \xi &= x - \int_0^t u_0(t') dt' \\ u_0(t) &= \int_0^t (\sin\zeta - \tan\delta\cos\zeta) dt' \end{split}$$

Annahmen

 $h(\xi, t) = h(-\xi, t)$ (Höhe achsensymmetrisch bzgl. $\xi = 0$) $\tilde{u}(\xi, t) = -\tilde{u}(-\xi, t)$ (rel. Geschw. schiefsymm. bzgl. $\xi = 0$)

・ロン ・回 と ・ ヨ と ・ ヨ と

Savage-Hutter-Gleichungen in neuen Koordinaten

transformierte Differentialoperatoren

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial \tau} - \left(\eta \frac{\dot{g}}{g} + \frac{u_0}{g}\right) \frac{\partial}{\partial \eta}$$
$$\frac{\partial}{\partial x} = \frac{1}{g} \frac{\partial}{\partial \eta}$$

Gleichungen (II) ((I) transformiert, $t = \tau$)

(a)
$$\frac{\partial h}{\partial t} - \eta \frac{\dot{g}}{g} \frac{\partial h}{\partial \eta} + \frac{1}{g} \frac{\partial}{\partial \eta} (h\tilde{u}) = 0$$

(b) $\frac{\partial \tilde{u}}{\partial t} - \eta \frac{\dot{g}}{g} \frac{\partial \tilde{u}}{\partial \eta} + \frac{1}{g} (\tilde{u} \frac{\partial \tilde{u}}{\eta} + \beta \frac{\partial h}{\partial \eta}) = 0$

・ロン ・回と ・ヨン ・ヨン

Parabolic cap solution M-Welle Schock-Welle

Inhaltsverzeichnis

1 Transformation in neues Koordinatensystem

- 2 Exakte Lösungen der Savage-Hutter-Gleichungen
 - Parabolic cap solution
 - M-Welle
 - Schock-Welle
- 3 weitere exakte Lösungen
- 4 Konsequenzen f
 ür numerische L
 ösungen

5 Quellen

▲ □ ► ▲ □ ►

Parabolic cap solution M-Welle Schock-Welle

Wähle Ansatz $\tilde{u}(\eta, t) = \eta g'(t)$

Eingesetzt in (II)(b): $\frac{\partial h}{\partial \eta} = -\frac{g\ddot{g}}{\beta}\eta$ Integration unter Berücksichtigung der RB $h(\eta = \pm 1) = 0$ ergibt: $h = \frac{g\ddot{g}}{2\beta}(1 - \eta^2)$

・ロト ・回ト ・ヨト ・ヨト

2

Parabolic cap solution M-Welle Schock-Welle

Berechnung von g

Aus Massenerhaltung und konst. Dichte folgt:

$$\int_{\xi_R}^{\xi_F} h(\xi,t) d\xi = \int_{-1}^1 h(\eta,t) g(t) d\eta = M = const.$$

Hieraus ergibt sich nach Vertauschung von abh. und unabh. Variablen die Lösung

$$(g(g-1))^{\frac{1}{2}} + ln|g^{\frac{1}{2}} + (g-1)^{\frac{1}{2}}| = (3\beta M)^{\frac{1}{2}}t$$

Parabolic cap solution M-Welle Schock-Welle

Parametric cap solution

Parameterabh. Lösung

$$egin{aligned} & ilde{u}(\eta,t) = [rac{2\kappa}{g}(g-1)]^{rac{1}{2}}\eta\ &h(\eta,t) = rac{\kappa}{g}(1-\eta^2) \end{aligned}$$

$$K = \frac{3\beta M}{2+3d_M}$$

Kontrollgleichung (Konsistenz mit Annahmen):

$$\lim_{t \to 0} rac{\dot{g}}{u_0} = rac{2\epsilon k_{actpass} cos \zeta}{sin \zeta - tan \delta cos \zeta} < 1$$

イロン イヨン イヨン イヨン

Parabolic cap solution M-Welle Schock-Welle

Parametric cap solution

Parameterabh. Lösung für $h(\eta = \pm \overline{1, t}) = d_M$:

$$egin{aligned} & ilde{u}(\eta,t) = [rac{2K}{g}(g-1)]^{rac{1}{2}}\eta\ &h(\eta,t) = rac{K}{g}(1+d_M-\eta^2) \end{aligned}$$

$$K = \frac{3\beta M}{2+3d_M}$$

イロン イヨン イヨン イヨン

Parabolic cap solution M-Welle Schock-Welle

Parametric cap solution

・ロト ・回ト ・ヨト

.⊒ .⊳

Parabolic cap solution M-Welle Schock-Welle

Bemerkungen

Asymptotisches Verhalten: $t ightarrow \infty$

$$egin{aligned} & ilde{u} \sim (2\mathcal{K})^{rac{1}{2}}\eta \ & h \sim (rac{\mathcal{K}}{2})^{rac{1}{2}}t^{-1}(d_M+(1-\eta^2)) \ & g \sim (2\mathcal{K})^{rac{1}{2}}t \end{aligned}$$

Stabilität

Lösung ist asymptotisch stabil gegenüber Störungen welche g nicht stören

Lösung nur gültig für ϵ hinreichend klein

イロン イヨン イヨン イヨン

Parabolic cap solution M-Welle Schock-Welle

Parametric cap solution

イロン イヨン イヨン イヨン

æ

Parabolic cap solution M-Welle Schock-Welle

Inhaltsverzeichnis

1 Transformation in neues Koordinatensystem

- 2 Exakte Lösungen der Savage-Hutter-Gleichungen
 Parabolic cap solution
 - M-Welle
 - Schock-Welle
- 3 weitere exakte Lösungen
- 4 Konsequenzen f
 ür numerische L
 ösungen

5 Quellen

▲ □ ► ▲ □ ►

Parabolic cap solution M-Welle Schock-Welle

Ansatz

Wähle Ansatz

$$egin{aligned} h(\eta,t) &= t^{\gamma} H(\eta) \ \widetilde{u} &= t^{\delta} F(\eta) \ g(t) &= t^{lpha} \end{aligned}$$

einsetzen in (II) ergibt ein Differentialgleichungssystem, welches für $\gamma = 2\delta$ und $\delta = \alpha - 1$ unabh. von t ist Aus der Massenerhaltung folgt außerdem $\alpha + \gamma = 0$ $\Rightarrow \alpha = \frac{2}{3}, \beta = -\frac{2}{3}, \gamma = -\frac{1}{3}$

・ロン ・回 と ・ ヨン ・ ヨン

Parabolic cap solution M-Welle Schock-Welle

M-Welle

einfache Lösungen für F und H

$$egin{aligned} \mathcal{F}(\eta) &= rac{2}{3}\eta\ \mathcal{H}(\eta) &= rac{1}{geta}(dM-(1-\eta^2)), d_M > 1 \end{aligned}$$

Lösung von (II)

$$egin{aligned} & ilde{u}(\eta,t)=rac{2}{3}t^{-rac{1}{3}}\eta\ &h(\eta,t)=rac{1}{geta}t^{-rac{2}{3}}(d_M-(1-\eta^2)), d_M>1\ &g(t)=t^{rac{2}{3}}\ &M=rac{2}{geta}(d_M-rac{2}{3}) \end{aligned}$$

イロン イヨン イヨン イヨン

э

Parabolic cap solution M-Welle Schock-Welle

M-Welle

Э

Parabolic cap solution M-Welle Schock-Welle

Bemerkungen

Stabilität

Lösung ist asymptotisch stabil gegenüber Störungen welche g nicht stören

Lösung ist inkonsistent falls t nicht folgende Bedingung erfüllt:

$$t > [rac{2}{3(sin\zeta - tan\delta cos\zeta)}]^{rac{3}{4}}$$

Parabolic cap solution M-Welle Schock-Welle

Inhaltsverzeichnis

1 Transformation in neues Koordinatensystem

2 Exakte Lösungen der Savage-Hutter-Gleichungen

- Parabolic cap solution
- M-Welle
- Schock-Welle
- 3 weitere exakte Lösungen
- 4 Konsequenzen f
 ür numerische L
 ösungen

5 Quellen

▲ □ ► ▲ □ ►

Parabolic cap solution M-Welle Schock-Welle

Schock-Welle

Sprungbedingungen (
$$\delta = \phi, s = 0$$
)
 $h_l(u_l - v) - h_r(u_r - v) = 0$
 $h_lu_l(u_l - v) - h_ru_r(u_r - v) = -\frac{\cos\zeta k_{actpass,l}h_l^2}{2} + -\frac{\cos\zeta k_{actpass,r}h_r^2}{2}$

Lars Lubkoll

Inhaltsverzeichnis

Transformation in neues Koordinatensystem

- 2 Exakte Lösungen der Savage-Hutter-Gleichungen
 - Parabolic cap solution
 - M-Welle
 - Schock-Welle

3 weitere exakte Lösungen

4 Konsequenzen f
ür numerische L
ösungen

5 Quellen

- 4 同 ト - 4 三 ト

- ∢ ≣ >

Ein einfaches Modell

イロン イヨン イヨン イヨン

Ein einfaches Modell

beide Grenzen werden gleichzeitig entfernt

 $\eta_* < \eta < \eta_0$

$$u = \frac{2}{3} \left(\sqrt{\beta h_0} + \frac{\eta - \lambda}{t} \right)$$
$$h = \frac{1}{9\beta} \left(2\sqrt{\beta h_0} - \frac{\eta - \lambda}{t} \right)^2$$

 $\eta^0 > \eta > \eta^*$

$$u = \frac{2}{3} \left(-\sqrt{\beta h_0} + \frac{\eta + \lambda}{t} \right)$$
$$h = \frac{1}{9\beta} \left(2\sqrt{\beta h_0} + \frac{\eta + \lambda}{t} \right)^2$$

gültig für $t < \frac{\lambda}{\sqrt{\beta h_0}} = \hat{t}$ für $t > \hat{t}$ Berechnung einer exakten Lösung möglich aber numerische Auswertung problematisch \rightsquigarrow nur Berechnung von Näherungslösungen sinnvolk seiter and

Ein einfaches Modell

Lars Lubkoll

Modellierung von Lawinenbewegungen

Ein einfaches Modell

Lars Lubkoll Modellierung von Lawinenbewegungen

Inhaltsverzeichnis

Transformation in neues Koordinatensystem

- 2 Exakte Lösungen der Savage-Hutter-Gleichungen
 - Parabolic cap solution
 - M-Welle
 - Schock-Welle
- 3 weitere exakte Lösungen
- 4 Konsequenzen f
 ür numerische L
 ösungen

5 Quellen

Konsequenzen für numerische Lösungen

auftretende Gradienten werden sehr groß und verursachen numerische Oszillationen

 am Lawinenende kommt es bei Auslösung und Ablagerung der Lawine zu Bewegungen

イロト イポト イヨト イヨト

Konsequenzen für numerische Lösungen

- auftretende Gradienten werden sehr groß und verursachen numerische Oszillationen
- am Lawinenende kommt es bei Auslösung und Ablagerung der Lawine zu Bewegungen entgegengesetzt der Lawinenbewegung
- Schockwellen treten auf

- ∢ ⊒ ⊳

Konsequenzen für numerische Lösungen

- auftretende Gradienten werden sehr groß und verursachen numerische Oszillationen
- am Lawinenende kommt es bei Auslösung und Ablagerung der Lawine zu Bewegungen entgegengesetzt der Lawinenbewegung
- Schockwellen treten auf

- ∢ ⊒ ⊳

Inhaltsverzeichnis

Transformation in neues Koordinatensystem

- 2 Exakte Lösungen der Savage-Hutter-Gleichungen
 - Parabolic cap solution
 - M-Welle
 - Schock-Welle
- 3 weitere exakte Lösungen
- 4 Konsequenzen f
 ür numerische L
 ösungen

5 Quellen

- ∢ ≣ >

Quellen

- Savage, S.B. & Hutter, K. (1989), The motion of a finite mass of granular material down a rough incline, Journal of Fluid Mechanics 199, pp. 177-215
- V.A. Chugunow, J.M.N.T. Gray, K. Hutter, Exact solutions of the Savage-Hutter equations for one-dimensional granular flows
- J.M.N.T. Gray, Y.C. Tai, K.Hutter, Shock waves and particle size in shallow granular flows

Vielen Dank für Eure Aufmerksamkeit!

・ロン ・四 と ・ ヨ と ・ モ と

æ

Fragen?

・ロン ・回 と ・ ヨン ・ モン

æ