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1 Introduction

In this work we consider the Airy differential equation

d2y

dx2
− xy = 0. (1)

The solutions of this second-order differential equation (1) are called Airy
functions and can be expressed in terms of Bessel functions of imaginary
argument of order ν = ± 1

3
. They play an important role in the theory of

asymptotic expansions of various special functions and have a wide range of
applications in mathematical physics.

The two linearly independent solutions of (1), the Airy functions of the first
and second kind Ai(x), Bi(x), respectively have the following asymptotic rep-
resentation for large |x| [11]:

Ai(x) =
1

2
√
π
x−1/4 e−2/3x3/2

[1 + O(|x|−3/2
)], (2a)

Bi(x) =
1√
π
x−1/4 e2/3x3/2

[1 + O(|x|−3/2)]. (2b)

To solve the Airy equation (1) numerically we introduce the uniform grid
points xm = m∆x, ym ' y(xm), and consider the standard discretization :

ym+1 − 2 ym + ym−1

(∆x)2
− xmym = 0, (3)

which can be rewritten as the second-order difference equation

ym+1 − 2 ym + ym−1 − cmym = 0, c = (∆x)3. (4)

In [17] Mickens derived the following asymptotic behaviour of the two linearly
independent discrete solutions to (4) with c = 1:

y(1)
m =

[

m7/2 em

mm

]

{

1 − 85

12m
+ O

(

1

m2

)}

, (5a)

y(2)
m =

[

mm e−m

m9/2

]

{

1 +
133

12m
+ O

(

1

m2

)}

. (5b)

It can easily be seen that the solutions to this discretization (4) do not have
the same asymptotic properties as the solutions of (1) which motivated the
construction of a nonstandard discretization scheme (cf. [17], [18]).

This paper is organized as follows: first we discuss a generalization of the the
discrete Airy equation (4) and show how to find exact and asymptotic solu-
tions. Afterwards we present an application to a problem arising in “parabolic
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equation” calculations in (underwater) acoustics and radar propagation in
the troposphere: we construct a so-called discrete transparent boundary condi-
tion (DTBC) for a Schrödinger equation with a linear potential term, discuss
different approaches and present an efficient implementation by the sum-of-
exponentials ansatz. Afterwards we analyze the stability of the resulting nu-
merical scheme. In this case the Laplace transformed Schrödinger equation
can be viewed as a general Airy equation. Discrete transparent boundary con-
ditions for a Schrödinger equation with constant potential were derived in [1]
and a generalization to a problem arising in (underwater) acoustics was pre-
sented in [2]. The construction of DTBC to the nonstandard discretization
scheme and to wide-angle parabolic equations will be a topic of future work.
Finally we illustrate the results with a numerical example from underwater
acoustics.

2 Exact and asymptotic solutions to the discrete Airy equation

In this section we consider the discrete Airy equation in the more general form

ym+1 − 2 ym + ym−1 − (d+ cm) ym = 0, c, d ∈ C. (6)

and show how to determine asymptotic solutions. This is a nontrivial task since
equation (6) is not of Poincaré type. For such an equation, the coefficients
must approach constant values as m → ∞ and it is clearly seen that the
coefficient of ym in equation (6) does not satisfy this condition. Afterwards we
will demonstrate how to obtain an explicit solution to (6).

The asymptotic solution. Since the classic theorems of Poincaré and Perron
cannot be applied to (6) it is not straight forward to obtain information about
the asymptotic behaviour of the solutions to this equation. One possible ansatz
is the one of Batchelder [5] given in [17] (see (5) in the case c = 1, d = 0).
Here we want to apply the approach of Wong and Li [23] to obtain asymptotic
solutions to the second–order difference equation

ym+2 +mp a(m) ym+1 +mq b(m) ym = 0, (7)

where p, q are integers and a(m) and b(m) have power expansions of the form

a(m) =
∞
∑

s=0

as

ms
, b(m) =

∞
∑

s=0

as

ms
, (8)

with nonzero leading coefficients: a0 6= 0, b0 6= 0. We increase the index of (6)

3



by one to put it in the form of (7) and make the following identifications:

a0 = −c, a1 = −(2 + c+ d), as = 0, s ≥ 2,

b0 = 1, bs = 0, s ≥ 1, p = 1, q = 0.

Then the two formal series solutions (cf. [23]) are given by

y(1)
m =

c−m

(m− 2)!
m−2−(2+d)/c

∞
∑

s=0

c(1)
s

ms
, (9a)

y(2)
m = (m− 2)! cm m1+(2+d)/c

∞
∑

s=0

c(2)
s

ms
. (9b)

To determine the values of the coefficients c
(1)
1 , c

(1)
2 , c

(1)
3 , . . . we substitute the

decaying solution y(1)
m in (7):

1

cm

(

m+ 1

m+ 2

)θ ∞
∑

s=0

c(1)
s

(m+ 2)s
+ c(m− 1)

(

m+ 1

m

)θ ∞
∑

s=0

c(1)
s

ms

=
(

c(θ − 1) + cm
)

∞
∑

s=0

c(1)
s

(m+ 1)s
, (10)

with θ = 2 + (2 + d)/c. We now obtain after an Taylor expansion in 1/m
and setting all the linearly independent terms equal to zero, by a lengthy but
elementary calculation, the results:

c
(1)
1 = −c(1)

0

[

c−2 − θ +
θ

2
(θ − 1)

]

, (11a)

c
(1)
2 =

c
(1)
0

2

[

θc−2 +
θ

2
(θ − 1) − θ

6
(θ − 1)(θ − 2)

]

−c
(1)
1

2

[

c−2 − 2 +
θ

2
(θ − 1)

]

,

(11b)

c
(1)
3 = −c

(1)
0

3

[

(

2θ +
θ

2
(θ − 1)

)

c−2 − θ

6
(θ − 1)(θ − 2) − θ

24
(θ − 1)(θ − 2)(θ − 3)

]

+
c
(1)
1

3

[

(2 + θ)c−2 − 2 + θ +
θ

2
(θ − 1) − θ

6
(θ − 1)(θ − 2)

]

− c
(1)
2

3

[

c−2 − 5 + θ +
θ

2
(θ − 1)

]

, (11c)

etc..
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Similarly we obtain for the increasing solution y(2)
m the first three coefficients

c
(2)
1 = c

(2)
0

[

c−2 − η +
η

2
(η − 1)

]

, (12a)

c
(2)
2 = −c

(2)
0

2

[

(η − 1)c−2 − η + η(η − 1) − η

6
(η − 1)(η − 2)

]

(12b)

+
c
(2)
1

2

[

c−2 + 3 − 2η − η

2
(η − 1)

]

,

c
(2)
3 =

c
(2)
0

3

[

(

1 +
η

2
(η − 1)

)

c−2 − η +
3

2
η(η − 1) − η

2
(η − 1)(η − 2)

+
η

24
(η − 1)(η − 2)(η − 3)

]

− c
(2)
1

3

[

(η − 1)c−2 − 7 − 6η + 2η(η − 1) − η

6
(η − 1)(η − 2)

]

(12c)

+
c
(2)
2

3

[

c−2 + 9 − 3η +
η

2
(η − 1)

]

,

with η = 1 + (2 + d)/c. Here c
(1)
0 , c

(2)
0 denote arbitrary constants.

Remark 1 We remark that in the special case c = 1, d = 0 we obtain

y(1)
m = c

(1)
0

m−4

(m− 2)!

(

1 − 3

m
+

21

2m2
− 104

3m3
+ O

(

m−4
)

)

, (13a)

y(2)
m = c

(2)
0 (m− 2)!m3

(

1 +
1

m
− 3

2m2
− 1

3m3
+ O

(

m−4
)

)

. (13b)

The explicit solution. In most cases, second-order linear difference equations
with variable coefficients cannot be solved in closed form. In this section we
show that in the special case of the discrete Airy equation (6), it is possible
to obtain an explicit solution. We present the derivation of this exact solution
and study its asymptotic behaviour.

If one wants to solve a difference equation with polynomial coefficients (like
(6)), one approach is to find the solution by the “method of generating func-
tions” (cf. [10]); i.e., a generating function for a solution of (6) can be shown
to satisfy a differential equation, which may be solvable in terms of known
functions. To start with, define the generating function to be

g(ξ) =
∞
∑

m=−∞

ymξ
m. (14)

We multiply (6) with ξm−1 and sum it up for m ∈ Z:

∞
∑

m=−∞

ymξ
m−2 − (2 + d)

∞
∑

m=−∞

ymξ
m−1 +

∞
∑

m=−∞

ymξ
m − c

∞
∑

m=−∞

mymξ
m−1 = 0.
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This results in the following ordinary differential equation for g:

g′(ξ) − 1 − (2 + d)ξ + ξ2

cξ2
g(ξ) = 0,

for which the solution is

g(ξ) = ξ−
2+d

c e(ξ− 1
ξ
)/c = ξ−

2+d
c

∞
∑

ν=−∞

Jν(
2
c
)ξν .

Hence, the exact decaying solution of (6) is the Bessel function Jν(
2
c
) (regarded

as function of its order ν), i.e. the discrete Airy equation is nothing else but
the recurrence relation for Jν(

2
c
). We note that it is well-known ([11], [22])

that the recurrence equation for the Bessel functions

Jν+1(z) − 2
ν

z
Jν(z) + Jν−1(z) = 0, (15)

still holds for complex orders ν and complex arguments z.

Thus the decaying solution to (6) can be represented as (cf. [22, Chapter 3.1]):

ym = Jm+ 2+d
c

(2
c
) =

1

cm+ 2+d
c

∞
∑

n=0

(−1)n

c2n n! Γ(m+ 2+d
c

+ n+ 1)
, c, d ∈ C. (16)

We also observe that (14) is not a generating function in the strict sense but
a Laurent series, which is uniformly convergent, i.e. differentiating each term
is permissible (cf. [22]). Note that this generating function approach is not
suitable for determining the growing solution of (6) for m→ ∞. This solution
is the so-called “Neumann-Function” (or Bessel function of the second kind)
which is known to also satisfy the recursion equation of the Bessel functions.

Remark 2 A difference equation more general than (6) was examined by
Barnes [4] in 1904. He also considered (6) and found (through a different
construction) the solution (16).

The next step is to use (16) to examine the asymptotic behaviour of the dis-
crete solutions. One can derive the following dominating series for the decaying
solution:

|ym| ≤ Ym =
1

|c|m+| 2+d
c |

1
∣

∣

∣Γ(m+ 2+d
c

+ 1)
∣

∣

∣

e

1

|c2(m+2+d
c +1)| , (17)

which can be estimated using Stirling’s inequality

Ym <
1√
2π

e
1

|c|2

|c|m+ 2+d
c

(

e

m

)m

m−
1
2

Γ(m+ 1)

Γ(m + 2+d
c

+ 1)
, (18)
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if (2+d)/c is a positive real number. We want to compare this result concerning
the decay rate with the one derived by Mickens [17]. From setting c = 1, d = 0
in (18), it follows that

Ym <
e√
2π

m−5/2 em

mm
, (19)

and we see that the decay rate of (18) and (5) differs by a factor m−6, i.e. our
new bound Ym decays faster.

Another approach is to use an approximation for the exact solution of (6).
We use the following asymptotic representation of Bessel functions for large
values of the order ν (cf. [11]):

Jν(z) ≈
1√
2π

eν+ν log(z/2)−(ν+1/2) log ν , |ν| → ∞, | arg ν| ≤ π − δ. (20)

This enables us to give another asymptotic form of the recessive solution to
the discrete model equation (6) with c = 1, d = 0:

ym = Jm+2(2) ≈
e2

√
2π

em (m+ 2)−(m+5/2), m→ ∞, (21)

and with Stirling’s formula this simplifies to ym ≈ 1/(m + 2)!, m→ ∞.

3 Application to Parabolic Equation Calculations

With the results from the previous Section we want to derive a discrete trans-
parent boundary condition (DTBC) for the so–called standard “parabolic equa-
tion” (SPE) [20], i.e. a one–way wave equation, arising for example in (under-
water) acoustics and radiowave propagation problems. Here we concentrate
on the application to underwater acoustics.

The standard parabolic equation in underwater acoustics. A standard
task in oceanography is to calculate the acoustic pressure p(z, r) emerging
from a time–harmonic point source located in the water at (zs, 0). Here, r > 0
denotes the radial range variable and 0 < z < zb the depth variable (assuming
a cylindrical geometry). The water surface is at z = 0, and the (horizontal)
sea bottom at z = zb. We denote the local sound speed by c(z, r), the density
by ρ(z, r), and the attenuation by α(z, r) ≥ 0. The complex refractive index
is given by N(z, r) = c0/c(z, r) + iα(z, r)/k0 with a reference sound speed c0

and the reference wave number k0 = 2πf/c0, where f denotes the frequency
of the emitted sound.

The SPE in cylindrical coordinates (z, r) reads:

2ik0ψr(z, r) + ρ ∂z(ρ
−1∂z)ψ(z, r) + k2

0 (N
2(z, r) − 1)ψ(z, r) = 0, (22)
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where ψ denotes the (complex valued) outgoing acoustic field

ψ(z, r) =
√

k0r p(z, r) e
−ik0r, (23)

in the far field approximation (k0r�1). This Schrödinger equation (22) is an
evolution equation in r and a reasonable description of waves with a propaga-
tion direction within about 15◦ of the horizontal.

Here, the physical problem is posed on the unbounded z–interval (0,∞) and
one wishes to restrict the computational domain in the z–direction by intro-
ducing an artificial boundary at the water–bottom interface (z = zb), where
the wave propagation in water has to be coupled to the wave propagation in
the the bottom. At the water surface one usually employs a Dirichlet (“pres-
sure release”) BC: ψ(0, r) = 0.

Since the density is typically discontinuous at the water–bottom interface
(z = zb), one requires continuity of the pressure and the normal particle
velocity:

ψ(zb−, r) = ψ(zb+, r), (24a)

ψz(zb−, r)

ρw
=
ψz(zb+, r)

ρb
, (24b)

where ρw = ρ(zb−, r) is the water density just above the bottom and ρb denotes
the constant density of the bottom.

In this work we are especially interested in the case of a linear squared re-
fractive index in the bottom region. For most underwater acoustics (and also
radiowave propagation) problems the squared refractive index in the exterior
domain increases with z. However, the usual transparent boundary condition
(see e.g. [2]) was derived for a homogeneous medium (i.e. all physical parame-
ters are constant for z > zb). This TBC is not matched to the behaviour of the
refractive index and spurious reflections will occur. Instead we will derive a
TBC that matches the squared refractive index gradient at z = zb. We denote
the physical parameters in the bottom with the subscript b and assume that
the squared refractive index Nb below z = zb can be written as

N2
b (z, r) = 1 + β + µ(z − zb), z > zb, (25)

with real parameters β and µ 6= 0, i.e. no attenuation in the bottom: αb = 0.
All other physical parameters are assumed to be constant in the bottom. Here,
the slope µ > 0 corresponds to a downward-refracting bottom (energy loss)
and µ < 0 represents the upward-refracting case, i.e. energy is returned from
the bottom.

One can easily derive an estimate for the L2–decay of solutions to the SPE,
posed on the half-space z > 0. We assume ρ = ρ(z) and a simple calculation

8



(cf. [2]) gives

∂r‖ψ(., r)‖2 = −2c0

∫

∞

0

α

c
|ψ|2 ρ−1 dz, (26)

for the weighted L2–norm (“acoustic energy”)

‖ψ(., r)‖2 =
∫

∞

0
|ψ(z, r)|2 ρ−1(z) dz, (27)

i.e. in the dissipation–free case (α ≡ 0) ‖ψ(., r)‖ is conserved and for α > 0 it
decays.

4 Transparent Boundary Conditions

Transparent Boundary Conditions. In the following we will review from
[14] the derivation of the transparent boundary condition at z = zb for the
SPE with a linear squared refractive index. A transparent BC for the SPE (or
Schrödinger equation) for a constant exterior medium was derived by several
authors from various application fields, e.g. in [1].

If we further assume that the initial data ψI = ψ(z, 0), which models a point
source located at (zs, 0), is supported in the computational domain 0 < z < zb,
then a Laplace transformation in range of (22) for z > zb yields:

ψ̂zz(z, s) + [µk2
0 (z − z̃b) + 2ik0s]ψ̂(z, s) = 0, z > zb, (28)

with z̃b = zb−β/µ. Now the basic idea of the derivation is to explicitly solve the
equation in the exterior domain z > zb. Setting σ3 = −µk2

0 and τ = 2ik0/σ
2

(28) can be written as

ψ̂zz(z, s) + σ2
[

σ(z − z̃b) + τs
]

ψ̂(z, s) = 0, z > zb. (29)

Introducing the change of variables ζs(z) = σ(z− z̃b)+ τs, U(ζs(z)) = ψ̂(z, s),
we can write (29) in the form of an Airy equation:

U ′′(ζs(z)) + ζs(z)U(ζs(z)) = 0, z > zb. (30)

The solution of (30) which decays for z → ∞, for fixed s, Re s > 0 is

ψ̂(z, s) = C1(s) Ai(ζs(z)), z > zb, (31)

if we define the physically relevant branch of σ to be

σ =







(µk2
0 )

1/3e−iπ/3, µ > 0,

(−µk2
0
)1/3, µ < 0.

(32)
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Elimination of C1(s) gives

ψ̂(z, s) = ψ̂(zb+, s)
Ai(ζs(z))

Ai(ζs(zb))
, z > zb. (33)

Finally, differentiation w.r.t. z yields with the matching conditions (24) the
transformed transparent BC at z = zb:

ψ̂z(zb−, s) =
ρw

ρb
s ψ̂(zb−, s)W (s), W (s) = σ

Ai′(ζs(zb))

sAi(ζs(zb))
, (34)

i.e. the transparent BC at z = zb reads:

ψz(zb, r) =
ρw

ρb

∫ r

0
ψr(zb, r

′) gµ(r − r′) dr′. (35)

The kernel gµ is obtained by an inverse Laplace transformation of W (s)
(cf. [7]):

gµ(r) = σ







Ai′(ζ0(zb))

Ai(ζ0(zb))
+

∞
∑

j=1

e−(aj−ζ0(zb))r/τ

aj − ζ0(zb)







, (36)

where ζ0(zb) = σβ/µ and the (aj) are the zeros of the Airy function Ai which
are all located on the negative real axis [19]. This BC is nonlocal in the range
variable r and can easily be discretized, e.g. in conjunction with a finite differ-
ence scheme for (22). The constant term in gµ acts like a Dirac function and
the infinite series represents the continuous part. As Levy noted in [15] the
kernel gµ decays extremely fast for µ > 0 and for negative µ it decays slowly
at short ranges and then oscillates.

Numerical Implementation. Now we shall discuss how to solve (22) nu-
merically with a Crank-Nicolson finite difference scheme which is of second
order (in ∆z and ∆r) and unconditionally stable. We will use the uniform
grid zj = jh, rn = nk with h = ∆z, k = ∆r and the approximations

ψ
(n)
j ≈ ψ(zj, rn), ρj ≈ ρ(zj). The discretized SPE (22) then reads:

−iR(ψ
(n+1)
j −ψ(n)

j ) = ρj∆
0

z(ρ
−1
j ∆0

z)(ψ
(n+1)
j +ψ

(n)
j )+w

(

(N2)
(n)
j −1

)

(ψ
(n+1)
j +ψ

(n)
j ),

(37)

with ∆0
zψ

(n)
j = ψ

(n)
j+1/2 − ψ

(n)
j−1/2, the mesh ratio R = 4k0h

2/k and w = k2
0h

2.

Discretization of the continuous TBC. To incorporate the TBC (35)
in a finite difference scheme we make the approximation that ψr(zb, r

′) is
constant on each subinterval rn < r′ < rn+1 and integrate the kernel gµ

exactly. In the following we review the discretization from [15] and start with
the discretization in range:

ψz(zb, rn) =
ρw

ρb

n−1
∑

m=0

ψ
(n−m)
b − ψ

(n−m−1)
b

k
Gm, (38)
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where we have set ψ
(n)
b = ψ(zb, rn) and Gm is given by

Gm =
∫ rm+1

rm

gµ(η) dη = kσ
Ai′(ζ0(zb))

Ai(ζ0(zb))
+

2ik0

σ

∞
∑

j=1

e−(aj−ζ0(zb))r/τ

(aj − ζ0(zb))2

∣

∣

∣

∣

r=rm+1

r=rm

. (39)

This leads after rearranging to

k
ρb

ρw
ψz(zb, rn) = −ψ(0)

b Gn + ψ
(n)
b G0 +

n−1
∑

m=1

ψ
(n−m)
b (Gm −Gm−1) (40)

In [15] Levy used an offset grid in depth, i.e. z̃j = (j + 1
2
)h, ψ̃

(n)
j ≈ ψ(z̃j, rn),

j = −1, . . . , J , where the water–bottom interface lies between the grid points
j = J − 1 and J :

ψ
(m)
b = ψ(zb, rm) ≈ ψ̃

(m)
J + ψ̃

(m)
J−1

2
, ψz(zb, rn) ≈

ψ̃
(n)
J − ψ̃

(n)
J−1

h
. (41)

This yields finally (recall that ψ̃
(0)
J = ψ̃

(0)
J−1 = 0) the following discretized TBC

for the SPE:

(1 − b0)ψ̃
(n)
J − (1 + b0)ψ̃

(n)
J−1 =

n−1
∑

m=1

bm(ψ̃
(n−m)
J + ψ̃

(n−m)
J−1 ), (42)

with

b0 =
1

2

h

k

ρw

ρb

G0, bm =
1

2

h

k

ρw

ρb

(Gm −Gm−1). (43)

Note that the constant term in (39) enters only b0. Since aj ∼ −
(

3π
8

(4j−1)
)2/3

for j → ∞ the series (39) defining Gm has good convergence properties for
positive range r but for r = 0 the convergence is very slow. To overcome this
numerical problem we use the identity

∞
∑

j=1

1

(aj − ζ0(zb))2
=

(

Ai′(ζ0(zb))

Ai(ζ0(zb))

)2

− ζ0(zb), (44)

which can be derived analogously to the one in [14].

In a numerical implementation one has to limit the summation in (36) and
therefore the TBC is not fully transparent any more. Moreover, the stability of
the resulting scheme is not clear since the discretized TBC (42) is not matched
to the finite difference scheme (37) in the interior domain. Instead of using
an ad–hoc discretization of the analytic transparent BC like in [15] we will
construct discrete TBCs of the fully discretized half–space problem with the
help of the results from Section 2.

Discrete transparent boundary conditions. To derive the discrete TBC
we will now mimic the derivation of the analytic TBC from Section 2 on a

11



discrete level. In analogy to the continuous problem we assume for the initial
data ψ0

j = 0, j ≥ J − 1 and use the linear potential term (N 2)
(n)
j − 1 =

β + µh(j − J), zb = Jh and solve the discrete exterior problem

−iR(ψ
(n+1)
j −ψ(n)

j ) = ∆2ψ
(n+1)
j +∆2ψ

(n)
j +w

[

β+µh(j−J)
]

(ψ
(n+1)
j +ψ

(n)
j ), (45)

j ≥ J − 1, ∆2ψ
(n)
j = ψ

(n)
j+1 − 2ψ

(n)
j + ψ

(n)
j−1, by using the Z–transformation:

Z{ψ(n)
j } = ψ̂j(z) :=

∞
∑

n=0

ψ
(n)
j z−n, z ∈ C, |z| > 1. (46)

Hence, the Z–transformed finite difference scheme (37), for j ≥ J , is a discrete
Airy equation

ψ̂j+1(z)− 2
[

1− iζ(z)− µ
k2

0

2
h3(j − J)

]

ψ̂j(z) + ψ̂j−1(z) = 0, j ≥ J − 1, (47)

with

ζ(z) =
R

2

z − 1

z + 1
− i

β

2
k2

0h
2. (48)

Comparing (47) with the recurrence relation of the Bessel function Jν(σ) yields
the condition

ν

σ
= 1 − iζ(z) − µ

k2
0

2
h3(j − J)

!
=
j + offset

σ
, (49)

and we conclude that the exact solution of (47) is

ψ̂j(z) = Jνj(z)(σ), (50)

with

ν = νj(z) = σ(1 − iζ(z)) + j − J, σ = −
(

µ
k2

0

2
h3
)

−1 ∈ R. (51)

From (50) we obtain the transformed discrete TBC at zb = Jh:

ψ̂J−1(z) = ĝµ,J (z)ψ̂J(z) with ĝµ,J (z) =
JνJ−1(z)(σ)

JνJ (z)(σ)
=
Jσ(1−iζ(z))−1(σ)

Jσ(1−iζ(z))(σ)
.

(52)
Finally, an inverse Z–transformation yields the discrete TBC

ψ
(n)
J−1 − `

(0)
J ψ

(n)
J =

n−1
∑

m=1

ψ
(n−m)
J `

(m)
J , (53)

with

`
(n)
J = Z−1 {ĝµ,J (z)} =

τn

2π

2π
∫

0

ĝµ,J (τeiϕ)einϕ dϕ, n ∈ Z0, τ > 0. (54)

12



Since this inverse Z-transformation cannot be done explicitly, we use a nu-
merical inversion technique based on FFT (cf. [9]); for details of this routine
we refer the reader to [8]. Note that the Bessel functions in (52) with complex
order and (possibly large) real argument can be evaluated by special software
packages (see e.g. [21]).

Since the magnitude of `
(n)
J does not decay as n → ∞ (Im `

(n)
J behaves like

const ·(−1)n for large n), it is more convenient to use a modified formulation
of the DTBCs (cf. [9]). We introduce the summed coefficients

s
(n)
J = Z−1 {ŝJ (z)} , with ŝJ(z) :=

z + 1

z
ˆ̀
J (z), (55)

which satisfy

s
(0)
J = `

(0)
J , s

(n)
J = `

(n)
J + `

(n−1)
J , n ≥ 1. (56)

In physical space, the DTBC is:

ψ
(n)
J−1 − s

(0)
J ψ

(n)
J =

n−1
∑

m=1

s
(n−m)
J ψ

(m)
J − ψ

(n−1)
J−1 , n ≥ 1. (57)

In the following, we will present two alternative approaches to obtain a DTBC:
asymptotic expansions and a continued fraction formula.

Asymptotic Expansions. For a second approach to obtain an approximated
DTBC, one can use asymptotic expansions. Using the asymptotic formula (20)
leads to the approximate DTBC

ψ̂J−1(z) = ĥµ,J(z)ψ̂J(z) with ĥµ,J (z) =
2

e
σ−1

√

νJ(νJ − 1)
( νJ

νJ − 1

)νJ
,

(58)
with νJ , σ given by (51).

Alternatively, one can use the asymptotic solution y(1)
m from (9a). The Z–

transformed scheme in the exterior j ≥ J −1, given by (47), is a discrete Airy
equation of the form (6) with

c = 2σ−1, d = −2iζ(z)− cJ, i.e. θ = 2 +
2 + d

c
= 2 + ν0,

and thus we obtain an approximation to the transformed DTBC of the form

ψ̂J−1(z) = k̂µ,J (z)ψ̂J(z), (59a)
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with

k̂µ,J (z) =
y

(1)
J−1

y
(1)
J

= c(J − 2)
( J

J − 1

)θ

∞
∑

s=1

c
(1)
s

(J−1)s

∞
∑

s=1

c
(1)
s

Js

. (59b)

Continued fraction formula. Finally, for a third approach for an approxi-
mation to the DTBC, we use a continued fraction formulation. Following [22,
Section 5.6] we can easily deduce an expression for the quotient of Bessel func-
tions (like (52)) as a continued fraction from the recurrence formula (15). If
we rewrite (15) as

Jν−1(z)

Jν(z)
= 2νz−1 − 1

Jν(z)
Jν+1(z)

,

it is obvious that

Jν−1(z)

Jν(z)
= 2νz−1 − 1

2(ν + 1)z−1 − ... −

1

2(ν +M)z−1 −

Jν+M−1(z)

Jν+M (z)
.

This holds for general values of ν and it can be shown, with the help of the
theory of Lommel polynomials [22, Section 9.65], that when M → ∞, the last
quotient may be neglected, so that

Jν−1(z)

Jν(z)
= 2νz−1 − 1

2(ν + 1)z−1 −

1

2(ν + 2)z−1 − ...
. (60)

This continued fractions formula offers another way to evaluate the quotient
of two Bessel functions needed in the transformed discrete TBC (52). For the
numerical implementation we use the modified Lentz’s method [13] which is
an efficient general method for evaluating continued fractions.

Remark 3 Our practical calculations showed that the evaluation of the con-
tinued fraction (60) is stable for all considered values of ν and z although we
cannot prove this yet.

Remark 4 For brevity of the presentation, we omit here the discussion of an
adequate discrete treatment of the typical density shock at z = zb and refer the
reader to [2] for a detailed discussion of various strategies.

5 Approximation by Sums of Exponentials

An ad-hoc implementation of the discrete convolution (57) with convolution

coefficients s
(n)
J from (55) (or obtained by any of the above approaches) has

still one disadvantage. The boundary condition is non–local and therefore
computationally expensive. In fact, the evaluation of (57) is as expensive as

14



for the discretized TBC (42). As a remedy, we proposed in [3] the sum-of-
exponentials ansatz (for a comparison of the computational efforts see Fig. 6).
In the sequel we will briefly review this approach.

In order to derive a fast numerical method to calculate the discrete convo-
lutions in (57), we approximate the coefficients s

(n)
J by the following (sum of

exponentials):

s
(n)
J ≈ s̃

(n)
J :=















s
(n)
J , n = 0, 1
L
∑

l=1

bl q
−n
l , n = 2, 3, . . . ,

(61)

where L ∈ N is a fixed number. Evidently, the approximation properties of
s̃
(n)
J depend on L, and the corresponding set {bl, ql}. Below we propose a

deterministic method of finding {bl, ql} for fixed L.

Let us fix L and consider the formal power series:

g(x) := s
(2)
J + s

(3)
J x+ s

(4)
J x2 + . . . , |x| ≤ 1. (62)

If there exists the [L− 1|L] Padé approximation

g̃(x) :=
PL−1(x)

QL(x)
(63)

of (62), then its Taylor series

g̃(x) = s̃
(2)
J + s̃

(3)
J x+ s̃

(4)
J x2 + . . . (64)

satisfies the conditions

s̃
(n)
J = s

(n)
J , n = 2, 3, . . . , 2L + 1, (65)

due to the definition of the Padé approximation rule.

Theorem 5 ([3]) Let QL(x) have L simple roots ql with |ql| > 1, l =
1, . . . , L. Then

s̃
(n)
J =

L
∑

l=1

bl q
−n
l , n = 2, 3, . . . , (66)

where

bl := −PL−1(ql)

Q′

L(ql)
ql 6= 0, l = 1, . . . , L. (67)

It follows from (65) and (66) that the set {bl, ql} defined in Theorem 5 can be
used in (61) at least for n = 2, 3, .., 2L + 1. The main question now is: Is it
possible to use these {bl, ql} also for n > 2L+1? In other words, what quality
of approximation

s̃
(n)
J ≈ s

(n)
J , n > 2L + 1 (68)

15



can we expect?

The above analysis permits us to give the following description of the approx-
imation to the convolution coefficients s

(n)
J by the representation (61) if we

use a [L− 1|L] Padé approximant to (62): the first 2L coefficients are repro-

duced exactly, see (65); however, the asymptotic behaviour of s
(n)
J and s̃

(n)
J (as

n→ ∞) differs strongly (algebraic versus exponential decay). A typical graph

of |s(n)
J − s̃

(n)
J | versus n for L = 27 is shown in Fig. 2 in Section 7.

Fast Evaluation of the Discrete Convolution. Let us consider the ap-
proximation (61) of the discrete convolution kernel appearing in the DTBC
(57). With these “exponential” coefficients the convolution

C(n) :=
n−1
∑

m=1

s̃
(n−m)
J ψ

(m)
J , s̃

(n)
J =

L
∑

l=1

bl q
−n
l , (69)

|ql| > 1, of a discrete function ψ
(m)
J , m = 1, 2, . . . , with the kernel coeffi-

cients s̃
(n)
J , can be calculated by recurrence formulas, and this will reduce the

numerical effort significantly (cf. Fig. 6 in Section 7).

A straightforward calculation (cf. [3]) yields: The value C (n) from (69) for
n ≥ 2 is represented by

C(n) =
L
∑

l=1

C
(n)
l , (70)

where

C
(1)
l ≡ 0,

C
(n)
l = q−1

l C
(n−1)
l + bl q

−1
l ψ

(n−1)
J , (71)

n = 2, 3, . . . l = 1, . . . , L.

Finally we summarize the approach by the following algorithm:

1. calculate s
(n)
J , n = 0, . . . , N − 1, via numerical inverse Z-transformation;

2. calculate s̃
(n)
J via Padé–algorithm;

3. the corresponding coefficients bl, ql are used for the efficient calculation
of the discrete convolutions.

Remark 6 We note that the Padé approximation must be performed with high
precision (2L − 1 digits mantissa length) to avoid a ‘nearly breakdown’ by ill
conditioned steps in the Lanczos algorithm (cf. [6]). If such problems still occur
or if one root of the denominator is smaller than 1 in absolute value, the orders
of the numerator and denominator polynomials are successively reduced.
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6 Stability Analysis of the numerical scheme

Here we analyze the stability of our numerical scheme for the SPE (37) along
with a surface condition and the the DTBC (53):



































































−iR(ψ
(n+1)
j −ψ(n)

j ) = ρj∆
0
z(ρ

−1
j ∆0

z)(ψ
(n+1)
j +ψ

(n)
j )+w

[

(N2)
(n)
j −1

]

(ψ
(n+1)
j +ψ

(n)
j )

j = 1, . . . , J − 1,

ψ
(0)
j = ψI(zj), j = 0, 1, 2, . . . , J − 1, J ;

with ψ
(0)
J−1 = ψ

(0)
J = 0,

ψ
(n)
0 = 0,

ψ̂J−1(z) = ĝµ,J (z)ψ̂J(z),

(72)
where ĝµ,J (z) is given by (52).

In the sequel we want to derive an a-priori estimate of the discrete solution in
the discrete weighted `2–norm:

‖ψ(n)‖2
2 := h

J−1
∑

j=1

|ψ(n)
j |2ρ−1

j , (73)

which is the discrete analogue to (27). The following theorem bounds the expo-
nential growth of solutions to the numerical scheme for a fixed discretization.

Theorem 7 (Growth condition) Let the boundary kernel ĝµ,J satisfy

Im ĝµ,J(γeiϕ) ≤ 0, ∀ 0 ≤ ϕ ≤ 2π, (74)

for some (sufficiently large) γ ≥ 1 (i.e. the system is dissipative). Assume
also that ĝµ,J (z) is analytic for |z| ≥ γ. Then, the solution of (72) satisfies
the a-priori estimate

‖ψ(n)‖2 ≤ ‖ψ0‖2 γ
n, n ∈ N. (75)

PROOF. The proof is based on a discrete energy estimate for the new vari-
able

φ
(n)
j := ψ

(n)
j γ−n,
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which satisfies the equation

−iR(φ
(n+1)
j − φ

(n)
j ) =

(

ρj∆
0

z(ρ
−1
j ∆0

z) + w
[

(N2)
(n)
j −1

])

(φ
(n+1)
j + φ

(n)
j ) (76a)

+ (γ − 1)
(

ρj∆
0

z(ρ
−1
j ∆0

z) + w
[

(N2)
(n)
j −1

]

+ iR
)

φ
(n+1)
j ,

j = 1, . . . , J − 1,

φ
(0)
j = ψ

(0)
j , j = 0, . . . , J, (76b)

φ
(n)
0 = 0, (76c)

∆−φ̂J(z) = −(ĝµ,J(γz) − 1) φ̂J (z). (76d)

In physical space, the bottom BC can be written as

∆−φ
(n)
J = −φ(n)

J ∗
˜̀(n)
J

γn
= −

n
∑

m=0

φ
(m)
J

(

˜̀(n−m)
J γm−n

)

. (77)

First we multiply (76a) by φ̄
(n)
j ρ−1

j /γ and its complex conjugate by φ
(n+1)
j ρ−1

j :

iR
(

|φ(n)
j |2 − φ̄

(n)
j φ

(n+1)
j

)

ρ−1
j =

φ̄
(n)
j

(

∆0

z(ρ
−1
j ∆0

z) + w
[

(N2)
(n)
j −1

]

ρ−1
j

) (

φ
(n+1)
j + φ

(n)
j

)

+(γ−1 − 1)φ̄
(n)
j

(

∆0

z(ρ
−1
j ∆0

z) +
(

w
[

(N2)
(n)
j −1

]

− iR
)

ρ−1
j

)

φ
(n)
j ,

(78a)

iR
(

|φ(n+1)
j |2 − φ̄

(n)
j φ

(n+1)
j

)

ρ−1
j =

φ
(n+1)
j

(

∆0

z(ρ
−1
j ∆0

z) + w
[

(N2)
(n)
j −1

]

ρ−1
j

) (

φ̄
(n+1)
j + φ̄

(n)
j

)

+(γ − 1)φ
(n+1)
j

(

∆0

z(ρ
−1
j ∆0

z) +
(

w
[

(N2)
(n)
j −1

]

− iR
)

ρ−1
j

)

φ̄
(n+1)
j .

(78b)

Next we subtract (78a) from (78b), sum from j = 1 to j = J − 1, and apply
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summation by parts:

iR
J−1
∑

j=1

(

|φ(n+1)
j |2 − |φ(n)

j |2
)

ρ−1
j = −

J−1
∑

j=1

(

|∆−φ
(n+1)
j |2 − |∆−φ

(n)
j |2

)

ρ−1
j−1/2

+
[

φ
(n+1)
J−1 ∆−

(

φ̄
(n+1)
J + φ̄

(n)
J

)

− φ̄
(n)
J−1∆

−
(

φ
(n+1)
J + φ

(n)
J

)

]

ρ−1
J−1/2

+ w
J−1
∑

j=1

([

(N2)
(n)
j −1

]

(|φ(n+1)
j |2 + φ̄

(n)
j φ

(n+1)
j ) −

[

(N2)
(n)
j −1

]

(|φ(n)
j |2 + φ̄

(n)
j φ

(n+1)
j )

)

ρ−1
j

+ w
J−1
∑

j=1

(

(γ − 1)
[

(N2)
(n)
j −1

]

|φ(n+1)
j |2 + (1 − γ−1)

[

(N2)
(n)
j −1

]

|φ(n)
j |2

)

ρ−1
j

− iR
J−1
∑

j=1

(

(γ − 1)|φ(n+1)
j |2 + (1 − γ−1)|φ(n)

j |2
)

ρ−1
j

− (γ − 1)
J−1
∑

j=1

|∆−φ
(n+1)
j |2ρ−1

j − (1 − γ−1)
J−1
∑

j=1

|∆−φ
(n)
j |2ρ−1

j

+
[

(γ − 1)φ
(n+1)
J−1 ∆−φ̄

(n+1)
J + (1 − γ−1)φ̄

(n)
J−1∆

−φ
(n)
J

]

ρ−1
J−1/2

(79)

Now, taking imaginary parts one obtains after a lengthy calculation:

J−1
∑

j=1

(

|φ(n+1)
j |2 − |φ(n)

j |2
)

ρ−1
j = −(γ − 1)

J−1
∑

j=1

|φ(n+1)
j |2ρ−1

j − (1 − γ−1)
J−1
∑

j=1

|φ(n)
j |2ρ−1

j

− w

γR

J−1
∑

j=1

Im
[

(N2)
(n)
j −1

]

|φ(n)
j + γφ

(n+1)
j |2ρ−1

j

− 1

γRρJ−1/2

Im
[

(

φ̄
(n)
J + γφ̄

(n+1)
J

)

∆−

(

φ
(n)
J + γφ

(n+1)
J

)

]

.

(80)

Summing (80) from n = 0 to n = N yields (note that γ ≥ 1):

‖φ(N+1)‖2
2 ≤ ‖φ(0)‖2

2 −
wh

γ2R

N
∑

n=0

J−1
∑

j=1

Im
[

(N2)
(n)
j −1

]

|φ(n)
j + γφ

(n+1)
j |2ρ−1

j

− h

γ2RρJ−1/2

Im
N
∑

n=0

(φ̄
(n)
J + γφ̄

(n+1)
J )∆−(φ

(n)
J + γφ

(n+1)
J )

= ‖φ(0)‖2
2 −

kh

2γ2

N
∑

n=0

J−1
∑

j=1

α
(n+1/2)
j

c0

c
(n+1/2)
j

|φ(n)
j + γφ

(n+1)
j |2ρ−1

j

+
k

4γ2k0hρJ−1/2

Im
N
∑

n=0

(φ̄
(n)
J + γφ̄

(n+1)
J ) (φ

(n)
J + γφ

(n+1)
J ) ∗

˜̀(n)
J

γn
.

(81)
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For the last identity we used the bottom BC (77) and φ
(0)
0 = φ

(0)
J = 0.

Since α
(n+1/2)
j ≥ 0, it remains to determine the sign of the last term in (81) to

finish the proof. To this end we define (for N fixed) the two sequences,

u(n) :=







φ
(n)
J + γφ

(n+1)
J , n = 0, . . . , N,

0, n > N,

v(n) := u(n) ∗
˜̀(n)
J

γn
=

n
∑

m=0

u(m)
˜̀(n−m)
J

γn−m
, n ∈ N0.

The Z–transform Z{u(n)} = û(z) is analytic for |z| > 0, since it is a finite
sum. The Z–transform Z{v(n)} then satisfies v̂(z) = (ĝµ,J (γz)− 1)û(z) and is
analytic for |z| ≥ 1. Using Plancherel’s Theorem for Z–transforms we have

N
∑

n=0

v(n)ū(n) =
∞
∑

n=0

v(n)ū(n) =
1

2π

∫ 2π

0
v̂(eiϕ)û(eiϕ) dϕ

=
1

2π

∫ 2π

0
|û(eiϕ)|2

(

ĝµ,J (γeiϕ) − 1
)

dϕ.

(82)

Using (82) for the boundary term in (81) now gives:

‖φ(N+1)‖2
2 ≤ ‖φ(0)‖2

2

+
h

2πRγ2ρJ−1/2

∫ 2π

0
|(1 + γeiϕ)φ̂J(eiϕ)|2 Im

(

ĝµ,J (γeiϕ) − 1
)

dϕ.

(83)

Our assumption on ĝµ,J therefore implies

‖φ(N)‖2 ≤ ‖φ(0)‖2, ∀N ≥ 0,

and the result of the theorem follows.

Remark 8 Above we have assumed that the Z-transformed boundary kernel
ĝµ,J (z) is analytic for |z| ≥ β. Hence its imaginary parts is a harmonic
functions there. Since the average of ĝµ,J (z) on the circles z = βeiϕ equals

g
(0)
µ,J = ĝµ,J (z = ∞), condition (74) implies Im ĝµ,J (z = ∞) ≤ 0. Then

we have the following simple consequence of the maximum principle for the
Laplace equation:

If condition (74) holds for some β0, it also holds for all β > β0.
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7 Numerical Example

In the example of this Section we will consider the SPE for comparing the
numerical result from using our new (approximated) discrete TBC to the
solution using the discretized TBC of Levy [14]. We used the environmental
test data from [7] and the Gaussian beam from [12] as starting field ψI. Below
we present the so-called transmission loss −10 log10 |p|2, where the acoustic
pressure p is calculated from (23). We computed a reference solution on a
three times larger computational domain confined with the DTBC from [2].

Example. As an illustrating example we chose the typical downward refract-
ing case (i.e. energy loss to the bottom): µ = 2 · 10−4 m−1. The source at the
depth zs = 91.44m is emitting sound with a frequency f = 300Hz and the re-
ceiver is located at the depth zr = 27.5m. The TBC is applied at zb = 152.5m
and the discretization parameters are given by ∆r = 10m, ∆z = 0.5m. It con-
tains no attenuation: α = 0. We consider a range-independent situation for
0 < r < 50 km, i.e. 5000 range steps. The sound speed varies linearly from
c(0m) = 1536.5m s−1 to c(152.5m) = 1539.24m s−1. The reference sound
speed c0 is chosen to be equal to c(zb) such that β = 0 in (25).

For this choice of parameters the mesh ratio becomes R ≈ 0.12246 and the
parameter σ ≈ −53345.32; that is, the value of νJ defined in (51) is much too
large for the routines like COULCC [21] for evaluating Bessel functions. On the
other hand, using the asymptotic formula (58) is not advisable since for large
νJ we have ĥµ,J(z) ∼ 2(1− iζ(z)) which is only the first term in the continued
fraction expansion (60). Therefore, we decided to evaluate the ratio of the two
Bessel functions in (52) by the continued fraction formula (60) together with
the sum-of-exponentials ansatz (61). We note that all approaches fulfilled for
moderate choices of νJ the growth condition (74) needed for stability.

We computed the first 1000 terms in the expansion (60) and used a radius
τ = 1.04 with 210 sampling points for the numerical inverse Z–transformation
(54). The choice of an appropriate radius τ is a delicate problem: it may not
be too close to the convergence radius of (60) due to the approximation error
and τ too large raises problems with rounding errors during the rescaling
process. For a discussion of that topic we refer the reader to [3, Section 2], [16]
and [25]. In order to calculate the convolution coefficients bn (discretized TBC
of Levy) we used the MATLAB routine from [24] to compute the first 100
zeros of the Airy function. Alternatively, using precomputed values from the
call evalf(AiryAiZeros(1..100)); in MAPLE with high precision yielded
indistinguishable results.

First we examine the convolution coefficients of the two presented approaches.
Fig. 1 shows a comparison of the coefficients bn from the discretized TBC (42)
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with the coefficients s
(n)
J from the approximated discrete TBC. The coefficients
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Fig. 1. Comparison of the convolution coefficients bn of the discretized TBC (42)

and s̃
(n)
J from the approximated discrete TBC (with L = 27).

bn decay even faster than the coefficients s
(n)
J . In Fig. 2 we plot both the exact

convolution coefficients s
(n)
J and the error |s(n)

J − s̃
(n)
J | versus n for L = 27

(observe the different scales).

Now we investigate the stability of the approximated discrete TBC and check
the growth condition (74). For β = 1 we have max{Im(ĝµ,J (β eiϕ)} = 0.153
and, with β = 1.01, we obtain max{Im(ĝµ,J (β eiϕ)} = −0.002 (see Fig. 3).
This means that the Z–transformed kernel ĝµ,J (β eiϕ) of the approximated
discrete TBC satisfies the stability condition (74) for β ≥ 1.01 (for this dis-
cretization).

In Fig. 4 and Fig. 5 we compare the transmission loss results for the discretized
TBC and the approximated discrete TBC in the range from 0 to 50 km. The
transmission loss curve of the solution using the approximated DTBC is indis-
tinguishable from the one of the reference solution while the solution with the
discretized TBC still deviates significantly from it (and is more oscillatory) for
the chosen discretization. The result in Fig. 5 does not change if we compute
more zeros of the Airy function.

Evaluating the convolution appearing in the discretized TBC (42) is quite ex-
pensive for long-range calculations. Therefore we extended the range interval
up to 250 km and shall now illustrate the difference in the computational ef-
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fort for both approaches in Fig. 6: The computational effort for the discretized
TBC is quadratic in range, since the evaluation of the boundary convolutions
dominates for large ranges. On the other hand, the effort for the approximated
discrete TBC only increases linearly. The line (- - -) does not change consid-
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Fig. 4. Transmission loss at zr = 27.5 m.

0 5 10 15 20 25 30 35 40 45 50

50

55

60

65

70

75

80

85

90

95

100

Range r   [km]

T
ra

ns
m

is
si

on
 L

os
s 

  [
dB

]

Approximated Discrete TBC (L=27)

Fig. 5. Transmission loss at zr = 27.5 m.

erably for different values of L since the evaluation of the sum-of-exponential
convolutions has a negligible effort compared to solving the PDE in the interior
domain.
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Conclusion

We have proposed a variety of strategies to derive an approximation to the
discrete TBC for the Schrödinger equation with a linear potential term in the
exterior domain. The derivation was based on the knowledge of the exact solu-
tion (including the asymptotics) to the discrete Airy equation. Our approach
has two advantages over the standard approach of discretizing the continu-
ous TBC: higher accuracy and efficiency; while discretized TBCs have usually
quadratic effort, the sum-of-exponential approximation to discrete TBCs has
only linear effort. Moreover, we have provided a simple criteria to check the
stability of our method.
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