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Chapter 1

Introduction

Over the last several years there were numerous discussions about the Black-
Scholes model and its appliance to the nonlinear case. In the linear model
there exists a lot of restrictions such as frictionless, liquid and complete
market. But all these assumptions are not fulfilled in reality. One of the most
important issues that has a great influence on the option pricing strategy are
transaction costs.

Several authors proposed relaxing hedging conditions dealing with trans-
action costs (see [1]). The first one was Leland [18]: he showed that

κ

2
|δ∆|S =

σ2

2
LeS2VSSδt. (1.1)

Here, Le denotes the Leland number :

Le =

√

2

π

(

κ

σ
√

δt

)

. (1.2)

Initiating this number and inserting it into the nonlinear Black-Scholes equa-
tion, Leland deduces that the option price is the solution of:

0 = Vt +
1

2
σ̃2S2VSS + rSVS − rV, (1.3)

where σ̃2 is the modified volatility

σ̃2 = σ2 (1 + Le signVSS) . (1.4)

Although this model has been criticized by Kabanov [15], it has played a
significant role in financial mathematics.

Boyle and Vorst [5] proposed the following form of modified volatility:

σ̃2 = σ2

(

1 + Le

√

π

2
sign(VSS)

)

. (1.5)
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2 Chapter 1. Introduction

Like Leland, they considered that V is convex and σ̃2 = σ2(1 + Le
√

π/2).
Under these assumptions the nonlinear Black-Scholes equation reduces to a
linear equation.

Hodges and Neuberger used an utility function [1]. They don’t define
it, but assume that this function characterizes the behavior of the investor.
In other words, it is a measurement of investor sufficing from the input.
They assume a market with transaction costs and state that the option price
should be equal to the unique cash increment. This is a displacement from
the difference between the highest utility from the final wealth with and
without option liability.

Barles and Soner [3] present another model by using the utility function
approach of Hodges and Neuberger. They make the following assumptions:
κ = a

√
ǫ ∀a > 0, as ǫ → 0, κ → 0, V is the unique viscosity solution of the

nonlinear Black-Scholes equation (1.3) with

σ̃2 = σ2
(

1 + Ψ(er(T−t)a2S2VSS)
)

. (1.6)

Here, Ψ(x) is the solution of the nonlinear ordinary differential equation
(ODE)

Ψ′(x) =
Ψ(x) + 1

2
√

xΨ(x) − x
, x 6= 0, Ψ(0) = 0. (1.7)

There is another model proposed by Kratka in [17] and improved by
Jandačka and Ševčovič in [14], which is called the Risk Adjusted Pricing
Methodology (RAPM). Here we need to consider transactions and find the
optimal time-lag δt between them. Then we sum up the rates of the trans-
action costs and of the risk from an unprotected portfolio. The aim is to
minimize this sum. In this way the portfolio is well protected with RAPM
and we have a new form of the modified volatility

σ̃2 = σ2

(

1 + 3(
C2M

2π
SVSS)

1
3

)

, (1.8)

where M ≥ 0 is the measurement of the transaction cost and C ≥ 0 is the
measurement of the risk premium.

Further we will consider compact schemes for European and American
options and work closer with the transaction cost model of Barles and Soner.
Instead of solving the singular differential equation (1.7) we propose to use
some properties of Ψ = Ψ(A) described recently in [6]. As compact schemes
cannot be directly applied to American type options and multi-dimensional
problems, we will try to employ them using a fixed domain transformation
explained in [2]. We will also consider the method of Liao and Khaliq [19]
for solving nonlinear Black-Scholes equation with transaction costs.



Chapter 2

Compact schemes

2.1 The valuation of options

Trading of options on assets first was organized in 1973. Assets that lie in
base of these financial derivatives are stocks, stock indices, foreign currency,
debt instruments, goods and future contracts. There exists two types of
vanilla options. Call option is a contract that gives the right to the holder
to buy the underlying asset on a particular date at a particular value. Put
option is a contract that gives the right to the holder to sell the underlying
asset on a particular date at a particular value. The price in the contract
is called exercise price (or strike price). The date in the contract is called
expiration date (or exercise date, maturity date). Options can also be two
types according to the expiration date. American options may be exercised
at any time before maturity date, European options may only be exercised
at the maturity date.

Remark 1. The terms ”American” and ”European” do not mean the
place of contracting but solely the type of the option.

Most options traded are American type options. Whereas European op-
tion are easier to analyze and some of the properties of American type options
are carried over from the properties of European options.

Remark 2. It should be said that options give the right to the holder to
do something. But it does not mean that the holder has to do it. This fact
separates options from futures and forwards, where the holder has to buy or
sell the underlying asset.

Let us mention also that to buy the option contract, the investor has to
pay. There exists two sides in every option contract. From one side there
is an investor who has the long position, i.e. he has bought the option or he
is the holder. From the other side there is an investor who has the short

3



4 Chapter 2. Compact schemes

position, i.e. he has sold or he is the writer. The holder of an option receives
the money immediately, but has the potential liabilities later. His gains or
losses are controversal to those of the writer.

Often it is beneficial to characterize the positions of European option
through the profit of the holder. In this case the initial value of the option is
not considered in calculations. If K is the exercise price, ST - the final value
of the underlying asset, then in European call option the long position will
have the profit max(ST −K, 0). This shows that the option will be exercised
if ST > K, and will not be exercised if ST ≤ K. The writer of the option will
have the opposite profit, i.e. in this case −max(ST −K, 0) = min(K−ST , 0).
The profit of the long position in the European put option is max(K−ST , 0).

2.2 Transaction cost models

When Fischer Black and Myron Scholes introduced their famous equation in
[4] it became easier to evaluate options. In an ideal market the price of an
option can be obtained through the linear Black-Scholes equation

0 = Vt +
1

2
σ2S2VSS + rSVS − rV, (2.1)

where S := S(t) > 0 and t ∈ (0, T ). This equation also gives a hedging
portfolio that replicates the contingent claim.

But in the real world there are a lot of restrictions such as frictionless,
liquid and complete market, transaction costs, and both volatility σ and the
drift µ can depend on the stock price S, the time t or the derivatives of the
option price V itself.

Here we will consider the famous Barles-Soner transaction cost model for
the nonlinear case of the Black-Scholes model with a constant drift µ and a
modified volatility function proposed in [3]

σ = σ0(1 + Ψ[exp(r(τ0 − τ))a2S2VSS]), (2.2)

where r is a risk-free interest rate, τ0 the maturity, a = µ
√

γN, γ risk averse
factor, N number of options to be sold. Under these assumptions (2.1)
becomes the following nonlinear Black-Scholes equation

0 = Vt +
1

2
σ2(t, S, VS, VSS)S2VSS + rSVS − rV, (2.3)

where dS = µSdt + σ̃SdW, S > 0, t ∈ (0, T ).
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2.3 High-order compact schemes

In [9] Düring, Fournié and Jüngel presented an approach to use high-order
compact schemes which need a stencil of three points in space only. Consider
the equation

0 = Vt +
1

2
σ(VSS)2S2VSS + rSVS − rV, (2.4)

where the nonlinear volatility σ(VSS) is given by (2.2). This equation is
backward in time because it is solved for the price S ≥ 0 of the underlying
asset and time 0 ≤ t ≤ T. The terminal and boundary conditions are the
following:

V (S, T ) = V0(S), S ≥ 0,

V (0, t) = 0, 0 ≤ t ≤ T, (2.5)

V (S, t) ∼ S − Eer(t−T ) (S → ∞).

The last condition can be rewritten in the form

lim
S→∞

V (S, t)

S − Eer(t−T )
= 1

uniformly for 0 ≤ t ≤ T.
Let us look at the problem in the nonlinear case and consider the Barles-

Soner nonlinear volatility (2.2). In the Black-Scholes equation we apply a
time reversal τ = T − t and obtain the following nonlinear model

0 = Uτ −
1

2
σ2S2USS − rSUS + rU, 0 < S < ∞, 0 < τ ≤ T, (2.6)

with the terminal and boundary conditions

U(S, 0) = max(0, S − E),

U(0, τ) = 0, (2.7)

lim
S→∞

U(S, τ)

S − Ee−rτ
= 1.

In the sequel we consider the fourth-order semidiscretization of the problem
(2.6), (2.7) in the form

du

dτ
= M(τ)u(τ), 0 < τ ≤ T, (2.8)

with initial conditions

u(0) = [u1(0), . . . , uN−1(0)]⊤, ui(0) = max(Si − E, 0), 1 ≤ i ≤ N − 1. (2.9)
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Here M(τ) is given by
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. . .
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. . .

. . .
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0 · · · · · · 0 aN−1N−4 aN−1N−3 aN−1N−2 aN−1N−1

































, (2.10)

where the values of the entries are:

αi = αi(τ) = −σ2
i S

2
i

24h2
+

rSi

12h
,

βi = βi(τ) =
2σ2

i S
2
i

3h2
− 2rSi

3h
,

γi = γi(τ) = −15σ2
i S

2
i

12h2
− r, (2.11)

δi = δi(τ) =
2σ2

i S
2
i

3h2
+

2rSi

3h
,

ξi = ξi(τ) = −σ2
i S

2
i

24h2
− rSi

12h
,

where σi = σ(USS(Si, τ)), and the following expressions for the nonzero en-
tries of the first, second and last two rows

a11 = γ1 + 10α1 + 4β1, a12 = δ1 − 20α1 − 6β1,

a13 = ξ1 + 15α1 + 4β1, a14 = −4α1 − β1,

a21 = β2 + 4α2, a22 = γ2 − 6α2,

a23 = δ2 + 4α2, a24 = ξ2 − α2,

aN−2N−4 = αN−2 − ξN−2, aN−2N−3 = βN−2 + 4ξN−2,

aN−2N−2 = γN−2 − 6ξN−2, aN−2N−1 = δN−2 + 4ξN−2,

aN−1N−4 = −δN−1 − 4ξN−1, aN−1N−3 = αN−1 + 4δN−1 + 15ξN−1,

aN−1N−2 = βN−1 − 6δN−1 − 20ξN−1, aN−1N−1 = γN−1 + 4δN−1 + 10ξN−1.

Remark 3. We consider the fully nonlinear problem without any lin-
earization process.
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After using the Euler method the numerical solution will be

u(τ) =

[

m=0
∏

m=ℓ−1

(I + kM(mk))

]

u(0), (2.12)

where k = △τ, ℓk = τ and

σ2
i = σ2

0(1 + Ψi(τ)), (2.13)

Ψi(mk) = Ψ

(

emkra2S2
i

(−ui−2 + 16ui−1 + 16ui+1 − ui+2

12h2

))

.

Here instead of solving numerically the singular ODE

Ψ′(A) =
Ψ(A) + 1

2
√

AΨ(A) − A
, A 6= 0, Ψ(0) = 0, (2.14)

we propose to use the following theorem presented recently in [6]:
Theorem 1. The nonlinear volatility correction function Ψ, unique so-

lution of (2.14) satisfies the following properties:
(i) Ψ is implicitly defined by

A =

(

−arcsinh
√

(Ψ)√
Ψ + 1

+
√

Ψ

)2

, if Ψ > 0, (2.15)

A = −
(

arcsin
√

(−Ψ)√
Ψ + 1

−
√
−Ψ

)2

, if 0 > Ψ > −1. (2.16)

(ii) Ψ is a one to one increasing function mapping the real line onto the
interval ] − 1, +∞[.

2.3.1 Classical finite difference schemes

We consider the nonlinear Black-Scholes model (2.4) with the volatility (2.2)
as proposed in [8]. In order to transform problem (2.2) into a convection-
diffusion problem, we use the following transformation:

x(S) = ln
S

E
, t(r) =

1

2
σ2

0(T − t), u = e−x V

E
.

Then (2.2) may be rewritten in the following form

ut −
(

1 + Φ[e(Kt+x)a2E(uxx + ux)]
)

(uxx − ux) − Kux = 0, (2.17)
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where x ∈ (−∞,∞), 0 ≤ t ≤ T =
σ2
0T

2
, K = 2r

σ2
0
. The rewritten problem

(2.17) has the following boundary and initial conditions:

u(x, 0) = u0(x) = max(1 − e−x, 0),

u(x, t) = 0 (x → −∞), (2.18)

u(x, t) ∼ 1 (x → +∞).

Here we will consider both standard difference schemes and compact
schemes, derived by Rigal [22]. All considered difference schemes have two
time levels. Let An and Bn be discretization matrices

An = [a−1, a0, a1], Bn = [b−2, b−1, b0, b1, b2]

then the schemes may be rewritten in the following form:

AnUn+1 = BnUn. (2.19)

The matrix An is tridiagonal and the obtained linear systems may be
solved using the Thomas algorithm [25]. Assume that

1
∑

i=−1

ai =

2
∑

i=−2

bi = 1.

The nonlinearity is expressed explicit in all the schemes. Let us define the
volatility correction in the following way:

σi = Ψ

[

exp (Knk + xi)a
2E

(

Un
i−2 − 2Un

i + Un
i+2

4h2
+

Un
i+1 − Un

i−1

2h

)]

. (2.20)

This formula gives an explicit discretization of nonlinearity and uses a special
stencil for the second derivative (step 2h instead of h).

Another problem lies in the initial condition for u0, as it is nondifferen-
tiable in the point x = 0. Oosterlee et al. [21] solved this problem of reduced
accuracy and proposed a grid stretching technique, which is based on an idea
of placing more points in the neighborhood of the nondifferentiable payment
condition. We use interpolation of high order to smooth the initial data but
only with approximation (2.20) useful results can be obtained.

The Figure 2.1 shows solutions of equations (2.15), (2.16) (on the left),
and of the ODE (2.14) (on the right) and their spline interpolation. It is
easily seen that figures show indistinguishable results. Results are obtained
using the standard Matlab routine fsolve.
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Figure 2.1: Solutions of equations (2.15), (2.16) and ODE (2.14).

Let us introduce the notation: λ = −(1 + K) - the linear part of the
coefficient of the convection term in (2.17); α = λh

2
- the Reynolds number;

r = k
h2 - the parabolic mesh ratio; µ = k

h
- the hyperbolic mesh ratio.

In the following we consider some classical finite difference schemes and
study their properties for the linear case but we will investigate these prop-
erties for the nonlinear case a > 0 further.

Forward-Time Central-Space explicit scheme (FTCS)
This scheme is given by

a−1 = 0, a0 = 1, a1 = 0,

b−1 = r − µ

2
(σi − λ), b0 = 1 − 2r − r

2
σi, b1 = r +

µ

2
(σi − λ),

b−2 = b2 =
r

4
σi.

It is of order (1,2), with a very strict stability condition:

r ≤ 1

2
. (2.21)

The condition
|α| ≤ 1 (2.22)

must be satisfied to avoid oscillations.

Backward-Time Central-Space semi-explicit scheme (BTCS)
This scheme, with an explicit treatment of the nonlinearity, is given by

a−1 =
λ

2
µ − r, a0 = 1 + 2r, a1 = −λ

2
µ − r,

b−2 =
r

4
σi, b−1 = −1

2
µσi, b0 = 1 − r

2
σi, b1 =

1

2
µσi, b2 =

r

4
σi.
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It is of order (1,2). It is unconditionally stable and if (2.22) is satisfied,
then it is non-oscillatory.

Crank-Nicolson (CN)
This scheme, with an explicit treatment of the nonlinearity, is given by

a−1 =
(

−r

2
+

µ

4

)

σi −
r

2
− λ

4
µ, b−1 =

(r

2
− µ

4

)

σi +
r

2
+

λ

4
µ,

a0 = 1 + r(1 + σi), b0 = 1 − r(1 + σi),

a1 =
(

−r

2
− µ

4

)

σi −
r

2
+

λ

4
µ, b1 =

(r

2
+

µ

4

)

σi +
r

2
− λ

4
µ,

and b−2 = b2 = 0. It is of order (2,2) and unconditionally stable.

2.3.2 Compact schemes of higher order

In [22] Rigal introduced several finite difference schemes (FDS) for linear
convection-diffusion problems. We will consider only two and apply them to
problem (2.17). These schemes are both compact two-level schemes of order
(2,4) in the linear case. The nonlinearity is treated semi-implicitly as in the
previous subsection.

In these methods several propositions were made. The class of two-level
three-point schemes of order (2,4) is defined in the following way:

a−1v
n+1
j−1 + a0v

n+1
j + a1v

n+1
j+1 = b−1v

n
j−1 + b0v

n
j + b1v

n
j+1. (2.23)

Matrices A and B are positive and all their entries are positive too. For the
FDS (2.23) to be positive matrix A−1B should be positive too. A and B are
tridiagonal matrices with diagonals [a−1, a0, a1] and [b−1, b0, b1] respectively.

For the general construction and description of properties of fourth-order
schemes we should refer to two lemmas correlative with two-level three-point
schemes (2.23) [22]. Consider the model diffusion-convection problem P :

∂tu = ∂2
xu − λ∂xu + f = Au + f in ]0, 1[×[0, T [.

We assume that
1
∑

i=−1

ai =

1
∑

i=−1

bi = 1,

which can always be obtained after a possible normalization of the coefficients
in consistent schemes.

Lemma 1. The FDS (2.23) is stable iff the coefficients ai, bi fulfill

(a1 − a−1)
2 − (b1 − b−1)

2 > a1 + a−1 − b1 − b−1, (2.24)
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(a1 − a−1)
2 − (b1 − b−1)

2 > a1 + a−1 − b1 − b−1. (2.25)

Lemma 2. The FDS (2.23) is non-oscillatory if the coefficients ai, bi

fulfill

(a1 − b1)(a−1 − b−1) ≥ 0. (2.26)

The general two-level three-point scheme (Ph) is defined in the following
way:

(1 + C)Dtv
n
j =

(

1

2
+ A1

)

D+D−vn
j +

(

1

2
+ A2

)

D+D−vn+1
j (2.27)

−λ

(

1

2
+ B1

)

D0v
n
j − λ

(

1

2
+ B2

)

D0v
n+1
j ,

where Ai, Bi, C are real constants chosen in the way to eliminate lower terms
in the truncation error. Dt, D0, D+, D− are the basic difference operators

Dtv
n
j =

vn+1
j − vn

j

△t
, D0v

n
j =

vn
j+1 − vn

j−1

2h
,

D+vn
j =

vn
j+1 − vn

j

h
, D−vn

j =
vn

j − vn
j−1

h
.

(2.28)

In order to get the truncation error, we need to apply (Ph) to u, smooth
enough solution of (P0), the homogeneous problem associated with (P) :

Eu(△t, h) = (1 + C)Dtu(xj , tn) (2.29)

−
(

1

2
+ A2

)

D+D−u(xj, tn+1)

−
(

1

2
+ A1

)

D+D−u(xj, tn)

−λ

(

1

2
+ B2

)

D0u(xj, tn+1)

−λ

(

1

2
+ B1

)

D0u(xj , tn).

Here u(x, t) satisfies

∂tu + λ∂xu = ∂2
xu. (2.30)
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By decomposing each term in (2.29) we get

Eu(△t, h) =
6
∑

j=1

ej∂
j
xu + HOD (higher order derivatives), (2.31)

where
e1 = λ(B1 + B2 − C), (2.32)

e2 = C − A1 − A2 − λ2△t

(

B2 −
C

2

)

, (2.33)

e3 = λ

[

△t(A2 + B2 − C) +
h2

6
(1 + B1 + B2) (2.34)

+λ2△t2

6

[

1

2
+ 3B2 − C

]]

,

e4 = △t

(

C

2
− A2

)

−(1+A1+A2)
h2

12
+λ2△t2

2

(

C − 1

2
− A2 − 2B2

)

(2.35)

−
(

1

2
+ B2

)

λ2h2△t

6
+ λ4△t3

24
(C − 4B2 − 1),

e5 = λ

[△t2

2

(

2A2 + B2 +
1

2
− C

)

+
h4

120
(1 + B1 + B2) (2.36)

+
h2△t

12

(

3

2
+ A2 + 2B2

)]

,

e6 =
△t2

2

(

C − 3A2 −
1

2

)

− (1 + A1 + A2)
h4

360
− h2△t

12

(

1

2
+ A2

)

. (2.37)

The class of R3 schemes is defined by

e1 = e2 = e3 = 0, (2.38)

ER3 = O(△t2 + h4), (2.39)

that means that e1, e2, e3 and the terms of order less than (2,4) in e4 should
dissappear.

We take C = 0 and prescribing (2.38) we express A1, A2, B1 as a function
of B2 :

B1 = −B2,

A2 = −λ2△t

12
− 1

6r
− B2

(

1 +
λ2△t

2

)

, (2.40)
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A1 =
λ2△t

12
+

1

6r
+ B2

(

1 − λ2△t

2

)

.

B2 must be chosen in such way that

e4 =
h2

12
− λ2△t2

6
+

B2

12
[−λ2h2△t + 12△t + λ4△t3] (2.41)

must be of order (2,4).

R3A scheme
In this scheme the choice for B2 is

B2 = − 1

12r
, (2.42)

which eliminates in e4 the only terms depending on △t and h2. Hence,

e4 = −λ2△t2

6
+

λ2h4

144
− λ4h2△t2

144
.

Replacing B2 in expressions (2.40) of A1, A2 the coefficients will be written
in the following way:

a−1 =

(

1

12
− r

2

)

(1 + α) − α2r

6
+

α2r2

3
,

a0 =
5

6
+ r +

α2r

3
− 2α2r2

3
,

a1 =

(

1

12
− r

2

)

(1 − α) − α2r

6
+

α2r2

3
,

b−2 =
r

4
σi,

b−1 =

(

1

12
+

r

2

)

(1 + α) +
α2r

6
+

α2r2

6
− 1

2
µσi,

b0 =
5

6
− r − α2r

3
− 2α2r2

3
− r

2
σi,

b1 =

(

1

12
+

r

2

)

(1 − α) − α2r

6
+

α2r2

3
+

1

2
µσi,

b2 =
r

4
σi.

It is stable in the linear case σi = 0 if

r ≤ 1√
2|α|

, (2.43)
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cf. [22]. If α is arbitrary, then this scheme is non-oscillatory.

R3B scheme
B2 for this scheme is defined in the following form:

B2 = − 1

12r
− λ2△t

12
. (2.44)

From (2.40) we have
B1 = −B2,

A1 =
1

12r
+

λ2h2

24
+

λ4△t2

24
,

A2 = − 1

12r
+

λ2h2

24
+

λ4△t2

24
.

The coefficients for this scheme are the following:

a−1 =

(

1

12
− r

2

)

(1 + α) − α2r

6
+

α2r2

3
− 2α4r3

3
,

a0 =
5

6
+ r +

α2r

3
+

4α4r3

3
,

a1 =

(

1

12
− r

2

)

(1 − α) − α2r

6
− α3r2

3
− 2α4r3

3
,

b−2 =
r

4
σi,

b−1 =

(

1

12
+

r

2

)

(1 + α) +
α2r

6
+

α3r2

3
+

2α4r3

3
−
(

r

4
+

1

2
µ

)

σi,

b0 =
5

6
− r − α2r

3
− 4α4r3

3
− 2rσi,

b1 =

(

1

12
− r

2

)

(1 + α) +
α2r

6
− α3r2

3
+

2α4r3

3
−
(

r

4
− 1

2
µ

)

σi,

b2 =
r

4
σi.

It is unconditionally stable and non-oscillatory in the linear case σi = 0
[22].

2.4 The fixed domain transformation

Compact schemes which many authors have applied to the Black-Scholes
equation with transaction costs have one severe disadvantage: these schemes
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cannot be generalized to multi-dimensional problems, and are (directly) ap-
plicable only to European type options. However, with the fixed domain
transformation of Ševčovič [2], [23] we will overcome this shortcoming.

We consider the Black-Scholes equation

0 = Vt +
1

2
σ̃2(t, S, VS, VSS)S2VSS + (r − q)SVS − rV, (2.45)

where q - dividend yield, is constant, S > 0, t ∈ (0, T ). This equation is
supplied with the following terminal and boundary conditions:

V (S, T ) = (S − K)+ for 0 ≤ S ≤ Sf(T ),

V (0, t) = 0 for 0 ≤ t ≤ T,

V (Sf (t), t) = Sf(t) − K for 0 ≤ t ≤ T,

VS(Sf (t), t) = 1 for 0 ≤ t ≤ T,

Sf(T ) = max(K, rK/q).

(2.46)

For simplicity we assume that r > q and we have Sf(T ) = rK/q for the
American call option.

Equation (2.45) subject to (2.46) is a backward-in-time parabolic free
boundary problem. To solve this free boundary problem numerically, many
different methods are developed, e.g. the standard method consists in the
reformulation to a linear complementary problem (LCP) and solution by a
projected SOR method of Cryer [7]. Alternatively, penalty and front-fixing
methods were developed (e.g in [11], [20]). A disadvantage of these methods
is the change of the underlying model. A different approach [13] is based on a
recursive calculation of the early exercise boundary, estimating the boundary
by Richardson interpolation. Explicit boundary tracking algorithms are e.g.
a finite difference bisection scheme [16] or the front-tracking strategy of Han
and Wu [12].

In this thesis we consider the approach of Ševčovič [23]. We want to
simplify the numerical solution of (2.45), (2.46) for American call options
and get rid of the (explicit) appearance of the free boundary. To do this,
we need to transform the problem into a problem posed on a fixed, but
unbounded domain additionally to the forward transformation in time. Then,
the domain does not depend on the free boundary Sf(t) anymore. All we
need is to calculate an algebraic constraint equation for the position of the
free boundary. Let’s make the following substitution:

τ = T − t, x = ln

(

̺(τ)

S

)

⇔ S = e−x̺(τ), ̺(τ) = Sf(T − τ),

such that x ∈ R
+ and τ ∈ [0, T ].
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The constructed (synthetic) portfolio will be the following:

Π(x, τ) = V (S, t) − SVS(S, t). (2.47)

After differentiating this portfolio with respect to x and τ and substituting
the result into (2.45) we get

0 = Πτ +

(

b(τ) − σ̃2

2

)

Πx −
1

2
∂x(σ̃

2Πx) + rΠ, (2.48)

defined on x ∈ R
+, 0 ≤ τ ≤ T, where the coefficient b(τ) is given by

b(τ) =
̺′

̺
(τ) + r − q.

The boundary and initial conditions from (2.46) transform into:

Π(x, 0) = V (S, T ) − SVS(S, T ) =







−K for S > K ⇔ x < ln
̺(0)

K
0 otherwise

,

(2.49)

Π(x, τ) = 0 as x → ∞, 0 ≤ τ ≤ T,

Π(0, τ) = −K for 0 ≤ τ ≤ T.
(2.50)

With the assumption r ≥ q we obtain

̺(τ) =
1

2q
σ̃2Πx(0, τ) +

rK

q
with ̺(0) =

rK

q
, (2.51)

where 0 ≤ τ ≤ T and the modified volatility function becomes

σ̃2 = σ2
(

1 + Ψ(erτa2Πx)
)

. (2.52)

Our transformed problem (2.48) subject to (2.49)-(2.51) with the volatil-
ity function (2.52) can be solved e.g. by the split-step finite-difference method
proposed by Ševčovič [23].

After using this method and solving the transformed problem, we can
calculate the value of the American call option V (S, t) by transforming (2.47)
back to the original variables. Since we know that

Π(x, τ)

S2
=

V (S, t)

S2
− VS(S, t)

S
= ∂S

(

−V (S, t)

S

)

,
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we integrate the above equation from S to Sf(t) with the boundary condition
V (Sf(t), t) = Sf(t) − K and we get

V (S, T − τ) =
S

̺(τ)






̺(τ) − K +

ln
̺(τ)

S
∫

0

exΠ(x, τ)dx






. (2.53)

Thus, (2.53) yields the price of the American call option V (S, t) in the
presence (and absence) of transaction costs.

2.5 The method of Liao and Khaliq

Liao and Khaliq [19] proposed a new high order compact scheme (HOC). Let’s
suppose we have the following one-dimensional time dependent convection-
diffusion equation:

ut = βuxx + λux, (2.54)

where β and λ are constants. This equation is transformed into a system of
two equations. The following new unknown function is introduced:

v(x, t) = ux(x, t), (2.55)

so
ut = βuxx + λv. (2.56)

We can obtain the same results even if there is a reaction term f(u) in
the equation (2.54):

ut = βuxx + λv + f(u) (2.57)

vt = βvxx + λuxx +
∂f

∂u
v. (2.58)

For the sake of completeness we need to write the initial and boundary
conditions. For u(x, t) it will be

u(x, 0) = u0(x),

u(0, t) = b0(t),

u(1, t) = b1(t).

For v(x, t) the condition will be a derivative of u(x, t) with respect to x then
letting t → 0:

v(x, 0) = u′

0(x).



18 Chapter 2. Compact schemes

Remark 4. Usually we cannot derive the initial condition for v(x, t).
Thus we need to propose some numerical approximation. In [19] a compact
fourth order numerical approximation is proposed to approximate v(0, t) and
v(1, t).

We have the central difference operator △0
x :

△0
xuj = uj+1 − uj−1. (2.59)

Suppose the grid is uniform, i.e. N sub-intervals form the interval [0, 1]
and h = 1

N
. We can write a second order approximation

v(h, t) =
∂u

∂x
(h, t) ≈ u(2h, t) − u(0, t)

2h
=

△0
x

2h
u(h, t). (2.60)

It can be improved to fourth order if △0
x is replaced by △0

x

1+ 1
6
△2

x

:

v(h, t) =
△0

x

2h(1 + 1
6
△2

x)u(h, t)
. (2.61)

And we can get a fourth order approximation:

v(0, t) =
3

h
(u(2h, t) − u(0, t)) − 4v(h, t) − v(2h, t). (2.62)

Hence, we can approximate the right boundary condition of v at x = 1 as

v(1, t) =
3

h
(u(1 − h, t) − u(1 − 2h, t)) − 4v(1 − h, t) − v(1 − 2h, t). (2.63)

Let us consider a more general system:

ut = βuxx + f(u, v), (2.64)

vt = λuxx + βvxx + g(u, v), (2.65)

where the term λv is included in the general function f(u, v) and there is
only one diffusion term βuxx in (2.64).

Now we should apply the new method. To start with, we write the Crank-
Nicolson scheme:

un+1
i − un

i

△t
=

1

2

(

β

h2
△2

xu
n+1
i +

β

h2
△2

xu
n
i + fn+1

i + fn
i

)

, (2.66)

vn+1
i − vn

i

△t
=

1

2

(

λ

h2
△2

x[u
n+1
i + un

i ] +
β

h2
△2

x[v
n+1
i + vn

i ] + gn+1
i + gn

i

)

,

(2.67)
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where
fn+1

i =f(un+1
i , vn+1

i ),

fn
i =f(un

i , v
n
i ),

gn+1
i =g(un+1

i , vn+1
i ),

gn
i =g(un

i , v
n
i ),

the standard second order difference operator △2
x is defined as:

△2
xui = ui+1 − 2ui + ui−1.

But (uxx)i ≈ 1
h2 (ui+1−2ui +ui+1) gives only the second order approximation

to uxx. We can further improve this approximation to the fourth order by
using instead the Padé approximation

(uxx)i ≈
△2

x

h2(1 + 1
12
△2

x)
.

We apply this Padé approximation in (2.66)-(2.67), multiply both sides
by 1 + 1

12
△2

x and the new scheme can be rewritten as

(

1 +
△2

x

12
− βrx

2

)

un+1
i =

(

1 +
△2

x

12
− βrx

2

)

un
i (2.68)

+
△t

2

(

1 +
△2

x

12

)

(fn+1
i + fn

i ),

(

1 +
△2

x

12
− βrx

2

)

vn+1
i =

(

1 +
△2

x

12
− βrx

2

)

vn
i + λ

rx

2
△2

x(u
n+1
i + un

i ) (2.69)

+
△t

2

(

1 +
△2

x

12

)

(gn+1
i + gn

i ),

where rx = △t

h2 .
It can be easily showed that the truncation error of (2.68) and (2.69) is

C1△t2 + C2△t4 + C3h
4. So, the Richardson extrapolation can be used here

to improve the approximation to fourth order in time.

Suppose the solutions of (2.68) and (2.69) after k iterations are un+1(k)

i

and vn+1(k)

i respectively. To get un+1(k+1)

i and vn+1(k+1)

i , we first should expand
fn+1

i in the following form:

f(un+1
i , vn+1

i ) = f(un+1(k)

i , vn+1(k)

i ) +
∂f

∂u
(un+1(k)

i , vn+1(k)

i )(un+1
i − un+1(k)

i )

(2.70)
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and insert it into (2.68), then solve the following equation for un+1(k+1)

i

(

1 +
1

12
△2

x −
βrx

2
△2

x −
△t

2
(1 +

1

12
△2

x)Ĵ
n+1(k)

i

)

un+1(k+1)

i =

=

(

1 +
1

12
△2

x −
βrx

2
△2

x

)

un
i +

+
△t

2
(1 +

1

12
△2

x)
(

f(un+1(k)

i , vn+1(k)

i ) − Ĵn+1(k)

i un+1(k)

i + f(un
i , v

n
i )
)

, (2.71)

where Ĵn+1(k)

i = ∂f

∂u
(un+1(k)

i , vn+1(k)

i ).

Once we have found un+1(k+1)

i , we expand gn+1
i as

g(un+1
i , vn+1

i ) = g(un+1(k)

i , vn+1(k)

i ) +
∂g

∂u
(un+1(k)

i , vn+1(k)

i )(un+1
i − un+1(k)

i ).

(2.72)
Substituting (2.72) into (2.69) we get:

(

1 +
1

12
△2

x −
βrx

2
δ2
x −

△t

2
(1 +

1

12
△2

x)J̃
n+1(k)

i

)

vn+1(k+1)

i

=

(

1 +
1

12
△2

x −
βrx

2
△2

x

)

un
i

+
△t

2
(1 +

1

12
△2

x)
(

f(un+1(k)

i , vn+1(k)

i ) − J̃n+1(k)

i un+1(k)

i + f(un
i , v

n
i )
)

, (2.73)

where J̃n+1(k)

i = ∂g

∂u
(un+1(k)

i , vn+1(k)

i ). We then solve (2.73) for vn+1(k+1)

i . The
two steps are repeated alternatively until convergence occurs.

In this section we considered several finite difference schemes and their
application to the Barles-Soner volatility function (2.2). Instead of solving
the singular differential equation (1.7) we used properties of Ψ = Ψ(A) (2.15),
(2.16) described recently in [6]. Calculating equations (2.15) and (2.16) and
comparing them to the solution of the ODE (2.14) showed indistinguishable
results. This proves numerically the theory of Company, Navarro, Pintos and
Ponsoda [6].
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Numerical solution

Many researchers tried to find solution of Black-Scholes equation but there
are not so many general-form solutions and authors develop numerical meth-
ods for solving this equation.

Many of found methods can only be applied to European options, like the
method of Liao and Khaliq [19] and methods derived by Rigal [22]. In case
of American options another strategy is needed. First the equation should
be transformed into the heat equation. Then domain should modified into
semiunbounded with a free boundary. Then the heat equation is solved on
this domain.

Exact analytical formulas for the free bundary Sf (t) in (2.3) with condi-
tions (2.5) is not known, but there exist several deductions of approximate
formulas for American option estimation in linear case. Recently Ševčovič in
[23] proposed a new method of transformation of the free boundary problem
for the early exercise boundary location into deduction of time dependent
nonlinear parabolic equation on a fixed domain.

In this chapter we will try to apply the method of Liao and Khaliq to
a nonlinear Black-Scholes equation in case of American options. In their
work [19] Liao and Khaliq offered an unconditionally stable compact finite-
difference scheme of fourth order both in space and time. In numerical ex-
amples they show the application of the method to the linear convection-
diffusion equation and nonlinear equation of Black-Scholes equation in case
of European options. In this chapter we will apply this method to nonlinear
Black-Scholes equation in case of American options.

21
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3.1 American options

We consider equation (2.3) with boundary conditions (2.5) and the volatility
function (2.2). This equation is a backward in time free boundary problem.
We need to transform the grid into a fixed but unbounded domain and apply
a forward transformation in time.

As was proposed in [23] the following change of variables is introduced:

τ = T − t, x = ln

(

̺(τ)

S

)

⇔ S = e−x̺(τ), ̺(τ) = Sf (T − t).

Building a portfolio

Π(x, τ) = V (S, t) − SVS(S, t),

applying the change of variables and the portfolio to our equation, we get
the following transformed problem:

0 = Πτ +

(

b(τ) − σ̃2

2

)

Πx −
1

2
∂x(σ̃

2Πx) + rΠ, x ∈ R
+, 0 ≤ τ ≤ T (3.1)

with the volatility function (2.2) and the conditions

Π(x, 0) =







−K for x < ln
r

q
,

0 otherwise,

Π(x, τ) = 0 as x → ∞, 0 ≤ τ ≤ T, (3.2)

Π(0, τ) = −K for 0 ≤ τ ≤ T,

and the restriction

̺(τ) − 1

2q
σ̃2Πx(0, τ) +

rK

q
with ̺(0) =

rK

q
. (3.3)

3.2 Grid

For the grid we refer to the work of Ehrhardt and Ankudinova [2]. We confine
the unbounded domain x ∈ R

+ and τ ∈ [0, T ] to x ∈ (0, R) with R > 0 large
enough. Ševčovič [23] chooses R = 3. We also take h > 0 - step in space, k > 0
- step in time, xi = ih, i ∈ [0, N ], R = Nh, τn = nk, n ∈ [0, M ], T = Mk.
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Figure 3.1: Uniform grid for American options.

3.3 Free boundary

We consider the free boundary (3.3). Let’s take the equation in the point
x = 0 and approximate the derivative in time by forward differences. We
obtain is the following result:

̺n =
1

2q
σ(1 + Ψ(erτna2D+

h Πn
0 ))D+

h Πn
0 +

rK

q
with̺0 =

rK

q
, (3.4)

where D+
h Πn

0 =
Πn

1−Πn
0

h
is the forward difference coefficient in point x = 0.

Fig. 3.2 shows the difference between the free boundary and the asymp-
totic free boundary taken with exercise date T = 1 year, exercise price
K = 10 and dividend yield q = 0.05.

Remark 5. The dividend yield is a way to calculate how much money is
received for every dollar invested. Investors that demand a minimum amount
of money from their investment portfolio, may hedge this amount by investing
it into assets that pay out relatively high stable dividend yield.

Sometimes dividends are so frequent that they can be calculated as con-
tinuous payments. But usually dividends are paid only several times per year
and are considered as discrete. In this case the main problem is how to in-
clude discrete dividend payments in Black-Scholes equation.
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Figure 3.2: Free boundary (solid) and asymptotic free boundary (dashed) with
T = 1, K = 10, r = 0.1, q = 0.05.

3.4 Method of Liao and Khaliq for American

Options

Liao and Khaliq in their work [19] proposed an efficient fourth-order numeri-
cal algorithm. It is based on the Padé approximation and derived with the
help of Richardson extrapolation. The method is described in Section 2.5.
This algorithm provides a fast, neat and clear option pricing with transaction
costs. It fits best to use it for the nonlinear case of the Black-Scholes equation.
In this algorithm a single convection-diffusion equation is split into a system
of two reaction-diffusion equations.

The method was applied to the nonlinear Black-Scholes equation in case
of European options. To apply the method to American options case we
need to combine it with some other method. First, we use the fixed domain
transformation described in [2]. Making the grid semi-unbounded and using
the substitution proposed by Ševčovič provides us the foundation for further
use of the method. In the calculations we use the volatility function of Barles
and Soner [3]. And instead of solving the ODE (2.14) we use Theorem 1
(Section 2.3) [6].
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After the change of variables, we find the boundary (see Section 3.3.).
And using the iteration method described in Section 2.5 we find the price of
the option.

Figure 3.3: Price of the American option in the presence of transaction costs
(in case of nonlinear Black-Scholes equation).

3.5 Algorithm

The calculations of the price V (S, t) for the American options in the presence
of transaction costs lead us to the following algorithm:
Algorithm. Computation of the price V (S, t) for the American option
Input parameters: σ, r, q, K, a, R, T, h, k, M, N, γ, α, β
1: solve formulas (2.15), (2.16) for the Barles and Soner volatility model and
interpolate the solutions
2: initialize Π0, ̺0, V T
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3: calculate Πn,p for each time level iteratively:
3.1: calculate volatility correction for time step τn using results from the
previous time step
3.2: calculate free boundary for the time step τn using results from the
previous time steps and volatility correction from the current time step
3.3: calculate the solution of the convective part (equation (2.68)) using
tridiagonal matrices
3.4: calculate the solution of the diffusive part (equation (2.69))
4: transform Π into V
5: plot V for each time level and each stock price.
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Conclusions

In this work we made an overview of the nonlinear Black-Scholes equation
in the presence of transaction costs in case of American options. Also, some
numerical methods were considered.

We began by introducing in Chapter 1 a general overview of the work
and some transaction cost models including Leland’s model, Barles and Soner
model and the Risk Adjustment Pricing Methodology. In Chapter 2 a general
introduction to the option pricing terminology was given. Then several high
order compact schemes were considered. In order to improve the results and
make the results more precise the scheme should be fourth order both in
time and space. The needed scheme is proposed in Section 2.5. The method
of Liao and Khaliq [19] performs better than other methods described in
Section 2.3.

In order to prove that the schemes work good we applied it to the nonlin-
ear Black-Scholes equation with transaction costs in case of American option
which was presented in Chapter 3. But before applying it to the equation we
needed to make some arrangements. This grid should be made into a fixed
semi-unbounded domain and some change of variables should be performed.
After that the method could be applied to the American options. In Section
3.4 the numerical results are shown and in Section 3.5 the algorithm of the
MatLab program is briefly introduced.

The obtained results provide a possibility for some future research di-
rections, i.e. implementation of (discrete) artificial boundary conditions, cf.
[10], since (2.18) is posed on an unbounded domain. Also, the order of the
time splitting method can be improved by using e.g. the classic second order
splitting method of Strang [24].

27
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Notation

K exercise price.
ST final value of the underlying asset.

r risk-free rate.
γ risk-averse factor.

V, VS , VSS option price and its derivatives.
U, US , USS option price and its derivations after the time reversal transformation.

Ψ(x) solution of the nonlinear ODE.
ai, bi coefficients of the compact schemes.

σ volatility function.
△2

x standard second order differential operator.
ρn free boundary.
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