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Abstract

This diploma thesis is concerned with the derivation and numerical testing of discrete transparent

boundary conditions (DTBCs) for multiband effective mass approximations (MEMAs). MEMAs
are used to model electronic states in semiconductor nanostructures. This thesis is focused
on the stationary case and comprises MEMAs such as the scalar Schrödinger equation, as
a representative of single-band effective mass approximations, the two-band Kane-model and
systems of k · p-Schrödinger equations.

An analysis of the continuous problem is given and transparent boundary conditions (TBCs)
are introduced. The discretization of the differential equations is done with the help of finite
difference schemes. A fully discrete approach is used in order to develop DTBCs that are
completely reflection-free. The analytical and discrete dispersion relations are analyzed in depth
and the limitations of the numerical computations are shown.

The results of earlier works on DTBCs for the scalar Schrödinger equation are extended
by alternative finite difference schemes. Existence and uniqueness of the numerical solutions
are shown. The introduced schemes and their corresponding DTBCs are tested on numerical
examples such as the single barrier potential and the tunneling effect at the double barrier
potential.

The two-band Kane-model and the two-band k · p-model with inter-band coupling are in-
troduced as particular examples of MEMAs. DTBCs for the general d-band k · p-model are
derived and the numerical results are tested on a quantum well nanostructure.

i





Zusammenfassung

Die vorliegende Diplomarbeit beschäftigt sich mit der Herleitung von diskreten transparenten
Randbedingungen für Effektive-Massen-Approximationen von Multiband-Systemen. Effektive-
Massen-Approximationen finden Anwendung in der Berechnung der elektrischen Zustände in
Halbleitern. Der Fokus dieser Arbeit liegt dabei auf dem stationären Fall. Es werden Modelle wie
die skalare Schrödinger Gleichung, das Zwei-Band Kane-Modell sowie Multiband-k · p-Modelle
behandelt.

Zunächst werden die Modelle auf kontinuierlicher Ebene untersucht und anschließend trans-
parente Randbedingungen hergeleitet. Die Diskretisierung der Modelle erfolgt mit Hilfe des
Finite-Differenzen-Verfahrens. Auf Grundlage der diskreten Lösungen im Außenraum werden
diskrete transparente Randbedingungen hergeleitet. Dieser sogenannte diskrete Ansatz ver-
spricht reflektionsfreie Randbindungen, während eine ad-hoc Diskretisierung der transparenten
Randbedingungen zu fehlerhaften Reflektionen an den künstlichen Rändern führen kann. Die
diskreten Dispersionsrelationen der verschiedenen Modelle werden mit der analytischen Disper-
sionrelation verglichen und es werden daran die Grenzen der numerischen Schemata aufgezeigt.

Die Ergebnisse früherer Arbeiten zu diskreten transparenten Randbedingungen für die ska-
lare Schrödinger Gleichung werden durch alternative Finite-Differenzen-Verfahren ergänzt. Für
jedes dieser Verfahren wird die Existenz und Eindeutigkeit der numerischen Lösung gezeigt. Die
eingeführten skalaren Schemata werden an einer einfachen Potentialbarriere sowie am Tunnel-
effekt der Doppelbarriere numerisch getestet.

Das Zwei-Band Kane-Modell sowie das Zwei-Band k · p-Modell mit Interband-Kopplung
werden als Beispiele von Multiband-Systemen eingeführt und auf kontinuierlichem sowie diskre-
tem Niveau untersucht. Abschließend wird das allgemeine k ·p-Modell mit d Bändern analysiert
und die zugehörigen diskreten transparenten Randbedingungen hergeleitet. Für das Acht-Band
k ·p-Modell wird ein physikalisch realistisches Beispiel einer Quantum-Well-Struktur behandelt
und die numerischen Ergebnisse mit den analytischen verglichen.
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Notation

Throughout this diploma thesis we will use bold lower-case characters for vectors and bold
capital characters for matrices while scalars are denoted by non-bold characters. However,
there are some exceptions to this rule due to physical conventions. First of all, we will adopt
the physical notation of the vector of the envelope functions and denote it by F. Moreover, in
Chap. 5, we will introduce matrices denoted by the bold lower-case characters m, v and e.

Schrödinger Equation
Ψ microscopic wave function
H scalar Hamiltonian operator
H matrix-valued Hamiltonian operator
d number of considered bands, class-A bands
Fn envelope function of the nth band
F vector of the d envelope functions F1, . . . , Fd

~ reduced Planck constant
m0 free electron mass

m* effective electron mass
mc effective electron mass of the conduction band
p quantum mechanical momentum operator, p = −i~∇,

p quantum mechanical momentum operator in 1D, p = −i~ d
dx ,

Ec band edge of the conduction band
Ev band edge of the valence band
Eg band gap, Eg = Ec − Ev

E0 middle of the band gap, E0 = 1
2 (Ec + Ev)

∆so spin-orbit splitting, i.e. energetic difference of the light holes and the split-off
bands

E energy
Ee energy of the electron
Eh energy of the hole
Veff effective potential energy of the electron
k wave vector, k = (kx, ky, kz)
k|| reduced wave vector, k|| = (kx, ky)

k scalar wave vector in direction of growth, k = kz

k̂ propagation coefficient of the scalar wave vector, k̂ = Re k

ǩ attenuation coefficient of the scalar wave vector, ǩ = Im k

Mathematical Symbols
i imaginary unit, i2 = −1
C set of complex numbers
R set of real numbers
iR set of purely imaginary numbers
Z set of integers
N set of integers ≥ 0
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Mathematical Symbols (continued)
Ck(a, b) space of all functions f defined in (a, b) with k continuous derivatives
Lp(a, b) space of all Lebesgue measurable functions f defined in (a, b) such that

‖f‖p =
(∫ b

a |f(x)|pdx
)1/p

<∞
W k,p(0, L) Sobolev space, space of all functions defined in (a, b) whose weak derivatives

up to k-th order are in Lp(a, b)
z complex conjugate of z
〈x, y〉 scalar or dot product of x and y

sign(x) sign of x, sign(x) =







1 x > 0
0 x = 0
−1 x < 0

O(hn) Landau-symbol
vT Transpose of the vector v
MT Transpose of the matrix M
MH Hermitian (transpose conjugate) of the matrix M
in(M) inertia of the matrix M

Grid Variables
J number of spatial grid points
h step size in the spatial variable, h = 1/J
j index for the spatial step, xj = jh

Abbreviations
BC Boundary Condition
TBC Transparent Boundary Condition
DTBC Discrete Transparent Boundary Condition
ODE Ordinary Differential Equation
PDE Partial Differential Equation
BVP Boundary Value Problem
EMA Effective Mass Approximation
MEMA Multiband Effective Mass Approximation



Chapter 1

Introduction

Partial differential equations (PDEs) arise in a wide field of physical problems and often they
are posed on unbounded domains. In order to compute a numerical solution to these PDEs
one requires a finite computational domain. Usually, this is done by introducing artificial

boundary conditions. If the solution of the unbounded domain restricted to the computational
domain equals the approximate solution when using the artificial boundary conditions, then
these boundary conditions are called transparent boundary conditions (TBCs).

TBCs of time-dependent Schrödinger equations have been discussed extensively, see for
example the review by Antoine et. al. [1]. It has been shown that a fully discrete approach
in deriving these TBCs, yielding so-called discrete transparent boundary conditions (DTBCs),
implies significant numerical advantages. On the other hand, an ad-hoc discretization of the
continuous TBCs can result in unphysical reflections at the TBCs and may influence the stability
of the numerical scheme, cf. [3], [38]. Moreover, this discrete approach was successfully applied
to general Schrödinger-type equations, see [2], [16] and [17].

DTBCs for systems of time-dependent Schrödinger equations were developed in [44] and
[46]. For stationary Schrödinger equations, however, DTBCs have only been developed in the
scalar case, [4].

In this diploma thesis we will summarize the results of the stationary scalar case and extend
it to some alternative discretizations in Chap. 2. After that, we will derive DTBCs for systems
of stationary Schrödinger equations. The first multiband model we will introduce is the so-called
two-band Kane-model in Chap. 3. In contrast to all other introduced models, the Kane-model
does not contain the Laplace-operator. The two-band k · p-model, we will discuss in Chap. 4,
equals basically the two-band Kane-model with an added Laplace-operator. Finally, we will
focus on the general d-band k · p-model in Chap. 5.

Before we start with the single-band model, let us briefly note some properties of electronic
states in semiconductors and their mathematical description.

1.1 Properties of Electronic States in Bulk Semiconductor Ma-

terials

The electronic states in bulk semiconductor materials are described by the wave function Ψ(r,k)
that depends on the real space vector r = (x, y, z) and parametrically depends on the wave

vector k = (kx, ky, kz). The wave function satisfies the one-particle Schrödinger equation on the
so-called atomistic scale

− ~
2

2m0
∆Ψ(r,k) + Veff(r)Ψ(r,k) = EΨ(r,k), (1.1)

with the reduced Planck constant ~ and the free electron mass m0, cf. [26]. Veff(r) denotes the
effective potential experienced by the electron or hole at the position r and E is the energy of
the electron or hole in the energy eigenstate Ψ(r,k) = ΨE(r,k) that solves Eq. (1.1).

1
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Figure 1.1: Schematic illustration of the band structure in a bulk semiconductor.

According to [11], the eigenstates can be expressed as Bloch waves

Ψ(r,k) = eik·ru(r,k), (1.2)

with the periodic Bloch function u(r,k). By applying the Bloch wave form (1.2) of the wave
function to the one-particle Schrödinger equation (1.1) we get

− ~
2

2m0
(∆ + 2ik · ∇ − k · k)u(r,k) + Veff(r)u(r,k) = Eu(r,k).

We use the quantum mechanical momentum operator

p = −i~∇

and end up with the eigenvalue problem

(

− ~
2

2m0
∆ +

~

m0
k · p +

~
2

2m0
k · k + V (r)

)

un(r,k) = Enun(r,k). (1.3)

The eigenvalue curves En = En(k), that correspond to the eigenfunctions un(r,k) of the energy
bands n ∈ N, form the band structure of the semiconductor. If we set k = k0 with k0 = (0, 0, 0)
the eigenvalue problem simplifies to

− ~
2

2m0
∆uΓ

n(r) + Veff(r)uΓ
n(r) = EΓ

nu
Γ
n(r), (1.4)

with the so-called zone center solutions uΓ
n(r) = un(r,k0) and the zone center energies EΓ

n =
En(k0). Eq. (1.4) is significantly easier to solve than Eq. (1.1) since the Bloch functions un are
periodic, cf. [43].

The set of all zone center solutions uΓ
m(r), m ∈ N, forms a basis of the space of all Bloch

functions un(r,k) for k 6= 0 and n ∈ N. Hence, any Bloch function un(r,k) can be expressed
in terms of the zone center solutions uΓ

m, m ∈ N. For any energy band denoted by n ∈ N the
Bloch function un(r,k) takes the form

un(r,k) =
∑

m∈N

cm(k)uΓ
m(r), (1.5)
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with some coefficients cm ∈ C, m ∈ N. This procedure of describing the Bloch function un(r,k),
that is an eigenfunction of Eq. (1.3), in terms of the zone center solutions uΓ

m(r), m ∈ N, is
known as k · p-method.

The contribution of the zone center solutions uΓ
m, m ∈ N, to the sum in Eq. (1.5) decays

proportionally to the difference of the energyEm = Em(uΓ
m) and the energy En, that corresponds

to the Bloch function un(r,k). For the approximation of the d near band edge states, the so-
called class A bands, we can restrict the sum in Eq. (1.5) to the first d near band edge zone
center solutions and get the d-band representation of the Bloch function

un(r,k) ≈
d∑

m=1

cm(k)uΓ
m(r). (1.6)

Fig. 1.1 shows a schematic illustration of the band structure in a bulk material. In this sketch
the class A bands comprise by the lowest conduction band and the three top-most valence
bands.

By applying the d-band representation of the Bloch function in Eq. (1.6) to the eigenvalue
problem (1.3) we get an eigenvalue problem of the coefficient vector c = (c1, . . . , cd)

T ∈ C
d

given by

Hbulk(k)c(k) = E(k)c(k), (1.7)

with the d × d bulk Hamiltonian Hbulk(k). Note that this bulk Hamiltonian also includes the
contribution of the class B bands as perturbations to the class A band contributions.

1.2 Semiconductor Nanostructures and Envelope Functions

In layered semiconductor nanostructures such as quantum wells and barriers the effective po-
tential Veff(r) changes from a periodic function to a superposition of an oscillatory part and a
slowly-varying part, see Fig. 1.2. The oscillatory part corresponds to the microscopic effective
potential of the semiconductor materials whereas the slowly-varying part is related to the com-
position of the semiconductor heterostructure of different bulk materials, see Fig. 1.2. According
to Bastard and Burt, [7] and [12], the wave function also satisfies this property of a slowly and
fast varying part. The slowly varying part is usually referred to as envelope function.

Burt and Foreman introduced a first rigorous approach, known as Burt-Foreman-approach,
in order to extend the k ·p-method to heterostructures, cf. [12], [13], and [20]. Let us define the
z-axis as direction of growth, i.e. perpendicular to the layered nanostructures. We introduce the
reduced wave vector k|| = (kx, ky) as well as the in-plane space vector r|| = (x, y). According to
the Burt-Foreman approach, we can replace the coefficients cn in (1.6) by the envelope functions
Fn(z,k||). Thus, the wave function Ψ can be expressed in the form

Ψ(r,k||) = eik||·r||
d∑

n=1

Fn(z,k||)u
Γ
n(r). (1.8)

The so called vector of the envelope functions F = (F1, . . . , Fd) ∈ C
d satisfies the stationary

k · p-Schrödinger equation

H

(

k||,−i
∂

∂z

)

F(z,k||) = E(k||)F(z,k||), (1.9)

with the k ·p-Hamiltonian H, cf. [12], [13] and [14]. This k ·p-Hamiltonian can also be derived
from the bulk Hamiltonian as given in Eq. (1.7) by replacing kz by −i ∂

∂z , [7]. Additionally,
coupling effects near the material interface are taken into account. Fig. 1.2 illustrates the
concept of the envelope function approximation in semiconductor heterostructures.
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Figure 1.2: Illustration of the envelope function approximation (by courtesy of Th. Koprucki,
[25]). The effective potential Veff(r) along the growth direction of a layered nanostructure
consisting of a well and a barrier material is shown. Obviously, the potential can be split
into fast and slowly-varying parts. Consequently, the wave function is a superposition of the
fast-varying Bloch functions and the slowly-varying envelope function.

The k·p-method together with the envelope function approximation is an established tool for
modeling electronic states in semiconductor heterostructures. Basically, there exists a hierarchy
of k · p-models including 4, 6 and 8 bands respectively. From these k · p-models one can
derive simplified models such as the single-band model of the conduction band, we will discuss
in Chap. 2, and the two-band Kane-model of the conduction band and the valence band in
Chap. 3.

The single-band model is known as effective mass approximation (EMA), [6]. All multiband
Hamiltonians H can be written in the form

H = Hintra + Hinter,

where Hintra is a diagonal operator that forms an EMA for every band and Hinter contains all
inter-band couplings. Therefore, these multiband models are called multiband effective mass

approximations (MEMAs).

1.3 Properties of the Solutions of Envelope Functions

In this thesis we will assume that the Hamiltonian H is constant outside the computational
domain. In other words, the physical properties of semiconductor materials do not change
outside the computational domain. We will drive elementary solutions of the vector of envelope
functions in the exterior domain. Those solutions can generally be split into propagating and
evanescent solutions as we will show later. We will consider traveling exterior solutions to enter
the computational domain at an artificial boundary and analyze the vector of the envelope
functions inside the computational domain and the vectors of the envelope functions that are
reflected and transmitted at the artificial boundaries.

An important property we will use in order to derive the TBCs and the DTBCs is the
continuity of the envelope functions and their derivatives if the material parameters are constant,
see [24]. Since we assume that the physical properties do not change in the exterior domains,
we can apply the continuity conditions to all incoming, reflected and transmitted envelope
functions.

The approach to consider incoming, traveling envelope functions implies that the resulting
envelope functions inside and outside the computational domain depend on the chosen norm
and phase of the incoming envelope functions. Therefore, we shall define the norm of the vector
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of incoming envelope functions to be unitary. Moreover, we have to consider that the phase of
the resulting envelope functions might be shifted.

Finally, we will give some remarks on the notation in this thesis. In the single-band case, i.e.
d = 1, the wave function Ψ is represented by the one-component vector of the envelope functions
F . In this case we shall call the envelope function ψ and refer to it as the wave function of the
single-band model. For multiband models, i.e. d > 1, we shall use the notation as introduced
in this chapter.

According mathematical conventions, the direction of growth is called x instead of z and
the wave vector kz is denoted by k.





Chapter 2

Single-Band Effective Mass

Approximations – The Schrödinger

Equation

We start with the stationary linear Schrödinger equation for the wave function ψ(x)

Hψ = Eψ, x ∈ R, (2.1)

where E denotes the energy of the electron and H is the Hamiltonian operator that reads

H = − ~
2

2m*

d2

dx2
+ V (x), (2.2)

with the reduced Planck constant ~, the effective mass m* of the electron and the real-valued
potential energy profile V (x) of the electron at the position x.

A solution ψE(x) of the stationary linear Schrödinger equation (2.1) is called an energy

eigenstate with associated energy E.

We consider a semiconductor of length L connected to reservoirs at x = 0 and x = L. Let
us assume that the potential V (x) is constant in the reservoirs, i.e.

V (x) = 0, x ≤ 0,

V (x) = VL, x ≥ L.

The assumption V (x) = 0 for x ≤ 0 means no loss of generality since we are free to set the
energetic zero point. Similarly, the assumption that the left boundary is located at x = 0 is no
loss of generality.

2.1 The Exterior Problem and the Quantum Mechanical Dis-

persion Relation

The exterior problem is concerned with the solution of the Schrödinger equation in the exterior
domains. By assumption, the potential V is constant in these domains and given above. How-
ever, we will not use the particular values of the potential in the exterior domains. Instead let
us continue with some constant potential V . The results stated can easily be transformed to
the results in the exterior domains by setting V ≡ 0 and V ≡ VL respectively.

If V is constant, Eq. (2.1) is a second order ordinary differential equation (ODE) with
constant coefficients that reads

− ~
2

2m*

d2

dx2
ψ = (E − V )ψ, x ∈ R. (2.3)

7
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As shown in the basic theory on ODEs, e.g. see [41], the solution of Eq. (2.3) takes the form

ψ(x) = ψ̂eκx, (2.4)

where ψ̂ ∈ C is an arbitrary constant and κ = κ1,2 ∈ C are the roots of the characteristic
polynomial

~
2

2m*
κ2 + (E − V ) = 0 (2.5)

of Eq. (2.3). We will refer to ψ̂ as the amplitude of the wave ψ.
Note that we can also write Eq. (2.4) in the form

ψ(x) = ψ̂eikx, (2.6)

with the complex wave vector

k = k̂ + iǩ = −iκ,

where k̂ is called propagation coefficient and ǩ denotes the attenuation coefficient. If the atten-
uation coefficient ǩ is zero, ψ is said to be traveling, while it is called evanescent otherwise.

With k = −iκ we can rewrite the characteristic polynomial (2.5) in the form

~
2

2m*
k2 = (E − V ) .

If we assume that the energy E satisfies

E > V, (2.7)

the wave vector k is real and takes the form

k = ±k̂, (2.8)

with

k̂ =

√

2m*

~2
(E − V ) > 0. (2.9)

Note that the resulting waves of the form (2.6) are traveling. In classical physics the energy
condition (2.7) is always fulfilled since there can only exist particles with an energy greater than
the potential at that point. However, in quantum physics this is not the case and therefore, we
shall, in general, not require the energy condition (2.7) to be fulfilled inside the computational
domain.

As can be seen from the quantum mechanical momentum operator in 1D

p = −i~
d

dx
,

the expectation value of the momentum p of the wave ψ of amplitude 1 is

〈pψ, ψ〉 = ~k 〈ψ,ψ〉 = ~k.

Hence, the expectation value of the momentum p is proportional to the wave vector k. This
means that a positive wave vector corresponds to a positive momentum, i.e. a right-traveling
wave, while a negative wave vector corresponds to a negative momentum, i.e. a left-traveling
wave.

If the energy does not satisfy the condition (2.7), i.e.

E ≤ V, (2.10)
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then the wave vector k is purely imaginary and takes the form

k1,2 = ±iǩ, (2.11)

with

ǩ =

√

2m*

~2
(V − E). (2.12)

This wave vector yields evanescent waves (2.6).
If we apply the solution (2.6) to Eq. (2.3) we obtain

~
2k2

2m*
ψ̂ = (E − V ) ψ̂.

Since we can neglect the trivial solution ψ ≡ 0, the energy E satisfies the quantum mechanical

dispersion relation

E = E(k) = V +
~

2k2

2m*
. (2.13)

2.2 Transparent Boundary Conditions

In order to transform the Schrödinger equation (2.1) on the real line x ∈ R into an equivalent
system posed on the bounded domain (0, L) we introduce artificial boundary conditions at
x = 0 and x = L. As described in Chap. 1, artificial boundary conditions that form a system
whose solution equals the solution of the unbounded problem on the domain (0, L) are called
transparent boundary conditions (TBCs).

In order to derive these TBCs we consider a plain wave of amplitude 1 with positive mo-
mentum and coming from −∞ that enters the computational domain from the left at x = 0

ψin = eik̂0x, x < 0, (2.14)

where k̂0 > 0 denotes the propagation coefficient (2.9) of the wave vector k in the left exterior
domain x ≤ 0, i.e. with V ≡ 0. The incoming wave (2.14) results in a reflected, left-traveling
wave

ψr = re−ik̂0x, x < 0, (2.15a)

with the reflection coefficient r, and a transmitted, right-traveling wave

ψt = teik̂Lx, x > L, (2.15b)

with the transmission coefficient t and the propagation coefficient ǩL > 0 of the wave vector k
in the right exterior domain x ≥ L, i.e. with V ≡ VL. The propagation coefficient k̂L satisfies

k̂L =

√

k̂2
0 −

2m*VL

~2
.

Thus, the solution in the left exterior domain has the form

ψ = ψin + ψr, x < 0, (2.16a)

and the solution in the right exterior domain is

ψ = ψt, x > L. (2.16b)

We know that the wave and its first derivative are continuous at the two boundaries, cf. [24].
Hence, we can eliminate the reflection and transmission coefficients by comparing Eq. (2.16a)
and its first derivative at x = 0 as well as Eq. (2.16b) and its first derivative at x = L.
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The resulting boundary value problem (BVP) reads

− ~
2

2m*
ψxx + V (x)ψ = Eψ, 0 < x < L, (2.17a)

ψx(0) + ikψ (0) = 2ik̂0, (2.17b)

ψx(L) − i

√

k̂2
0 −

2m*VL

~2
ψ (L) = 0. (2.17c)

Theorem 2.1 (Proposition 2.3 in [8]). Let V be in L∞(0, L) and real valued. Then the BVP
(2.17) has a unique solution ψ ∈W 2,∞(0, L).

2.3 The Standard Discretization

After stating the BVP (2.17) and showing that it has a unique solution, we want to derive tech-
niques to solve it numerically and compute eigenstates for corresponding energies and potentials.
First let us set ~ = m* = 1 for the remainder of this chapter. We will introduce finite difference

schemes (FDS) to solve the BVP, using the uniform discretization xj = jh, j = 0, . . . , J with
L = Jh, of the computational domain (0, L).

Definition 2.1. Let {xj} , j = 0, . . . , J, with the positive step size h = xj −xj−1,∀j = 1, . . . , J,
be given and let {fj} be the discretization of f : x 7→ f(x) with the approximation f (xj) ≈ fj .
Then we define the standard finite difference quotient operators

Dfwd
h fj :=

fj+1 − fj

h
(first order forward)

Dbwd
h fj :=

fj − fj−1

h
(first order backward)

Dcen
h fj :=

fj+1 − fj−1

2h
(second order centered)

Dstd
h fj :=

fj−1 − 2fj + fj+1

h2
(standard second order).

By applying the standard second order finite difference quotient operator we get the second

order standard FDS

−1

2
Dstd

h ψj + Vjψj = Eψj , j = 1, . . . , J − 1, (2.18)

for the Schrödinger equation (2.17) with Vj = V (xj) and the approximation ψj ≈ ψ (xj),
j = 0, . . . , J . We can rewrite Eq. (2.18) in the form

−ψj+1 + 2
(
1 − (E − Vj)h

2
)
ψj − ψj−1 = 0, j = 1, . . . , J − 1. (2.19)

This is a linear second order homogeneous difference equation with a spatially varying coefficient
Vj .

Now let us analyze the discrete exterior problem of the standard FDS. We will continue with
some constant potential V . The results of the exterior domains x ≤ 0 and x ≥ L can later be
derived by inserting the respective value of the potential in the results stated.

If V is constant, Eq. (2.19) is a linear second order difference equation with constant coeffi-
cients and as shown in [28], Eq. (2.19) has a solution of the form

ψj = ψ̂hα
j = ψ̂he

ln(α)j = ψ̂he
(ln|α|+i arg(α))j = ψ̂he

ikhjh, (2.20)

with α ∈ C, cf. (2.6). We will call ψ̂h the discrete amplitude of the discrete wave ψj and

kh = −i
1

h
ln (α) =

1

h
(arg (α) − i ln |α|) (2.21)
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the discrete wave vector. By applying Eq. (2.20) to Eq. (2.19) we get

−αj+1 + 2(1 − (E − V )h2)αj − αj−1 = αj−1
(
α2 − 2

(
1 − (E − V )h2

)
α+ 1

)
= 0.

Since we neglect the trivial solution α = 0, we have

α2 − 2
(
1 − (E − V )h2

)
α+ 1 = 0,

which implies
(
α−

(
1 − (E − V )h2

))2
= (E − V )h2

(
(E − V )h2 − 2

)
. (2.22)

If the energy E satisfies the energy condition (2.7), i.e.

E > V,

the right hand side of Eq. (2.22) is negative if the step size h satisfies

h <

√

2

E − V
, (2.23)

and hence, the roots of Eq. (2.22) are complex and read

α1,2 = 1 − (E − V )h2 ± i
√

(E − V )h2 (2 − (E − V )h2). (2.24)

We find that

|α1,2| =
(
1 − (E − V )h2

)2
+ (E − V )h2

(
2 − (E − V )h2

)
= 1,

and thus, the discrete wave vector kh is real and takes the form

kh = ±k̂h, (2.25)

cf. (2.8), with the propagation coefficient

k̂h =
1

h
arg (α) =

1

h
arccos

Reα

|α| =
1

h
arccos

(
1 − (E − V )h2

)
.

Note that we can neglect to add the term n2π
h , n ∈ Z, to this formula since for any n 6= 0 this

term diverges for h→ 0. On the other hand, we will see later that the discrete wave vector kh

as given in Eq. (2.25), i.e. with n = 0, tends to the analytical wave vector k for h→ 0.
The wave vector kh = k̂h corresponds to

α1 = 1 − (E − V )h2 + i
√

(E − V )h2 (2 − (E − V )h2),

while kh = −k̂h is associated with

α2 = 1 − (E − V )h2 − i
√

(E − V )h2 (2 − (E − V )h2).

Hence, we get two traveling waves, ψj = αj
1 being right-traveling and ψj = αj

2 being left-
traveling.

The case

h ≥
√

2

E − V
,

results in a nonnegative right hand side of Eq. (2.22) and thus, a complex conjugate pair of
purely imaginary wave vectors that give evanescent waves. However, this case is numerically
not applicable since it defines a lower bound for the step size h.
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Figure 2.1: Analytical wave vector and discrete wave vector of the standard FDS against the
number of grid points J = 1/h for an energy E = 500 and a potential V = 0.

On the other hand, if the energy E does not satisfy the energy condition (2.7), i.e.

E ≤ V,

the right hand side of Eq. (2.22) is also nonnegative, yielding a complex conjugate pair of
purely imaginary wave vectors that give evanescent waves. Let us recall the TBCs we derived
in Sec. 2.2. We considered an incoming wave, i.e. a traveling wave to enter the semiconductor
at x = 0. Hence, the case E ≤ V is not applicable either for the exterior domains since it leads
to evanescent waves only.

Now let us analyze the behavior of the discrete wave vector kh of the standard FDS for
h→ 0. Therefore, we use l’Hôpital’s rule to get

lim
h→0

kh = ± lim
h→0

k̂h

= ± lim
h→0

1

h
arccos

(
1 − (E − V )h2

)

= ± lim
h→0

−2 (E − V )h
√

1 − (1 − (E − V )h2)2

= ± lim
h→0

2 (E − V )
√

2 (E − V ) − (E − V )2 h2

= ±
√

2 (E − V ),

which equals the analytical wave vector (2.8) for ~ = m* = 1. Fig. 2.1 shows the discrete
wave vector k̂h of the standard FDS versus the number of grid points J = 1/h compared to
the analytical wave vector k̂ for an energy E = 500 and a potential V = 0. Considering that
the step size h has to satisfy Eq. (2.23), i.e. h < 1/16 in our example, the standard FDS
overestimates the wave vector for any admissible step size h.
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Note, that Eq. (2.25) defines the discrete dispersion relation. Finally, we will state this
relation in the reciprocal form. To do this, we recall the wave representation of the form
ψj = ψ̂eikhjh that implies

ψj+1e
−ikh = ψj = ψj−1e

ikh.

Applied to the difference equation (2.19), this gives

−eikh + 2
(
1 − (E − V )h2

)
− e−ikh = 0,

which leads to

E = Estd
h (kh) = V +

1 − cos khh

h2
= V +

2

h2
sin2 khh

2
= V +

k2
hh

2
+ O(h2), (2.26)

cf. the continuous dispersion relation (2.13).

2.4 Discretization of the Transparent Boundary Conditions

Let us now introduce a finite difference discretization of the two Robin-type TBCs (2.17b) and
(2.17c). We apply the second order centered difference operator Dcen

h to ψ0 at the left boundary
and ψJ at the right boundary. Let k̂0 denote the analytical propagation coefficient of a right-
traveling wave in the left exterior domain x ≤ 0. Then the analytical propagation coefficient of
a right-traveling wave in the right exterior domain is

k̂L =

√

k̂2
0 − 2VL.

At the left boundary we have

ψ1 − ψ−1

2h
+ ik̂0ψ0 = 2ik̂0,

which implies
−ψ−1 + 2ik̂0hψ0 + ψ1 = 4ik̂0h. (2.27a)

On the other hand, discretizing the right TBC gives

ψJ+1 − ψJ−1

2h
= i

√

k̂2
0 − 2VLψJ ,

that can be expressed in the form

ψJ−1 + 2i

√

k̂2
0 − 2VLhψJ − ψJ+1 = 0. (2.27b)

The two ghost points ψ−1 and ψJ+1 in Eq. (2.27) can be eliminated by subtracting the
FDS (2.19) of the Schrödinger equation (2.17a) at j = 0 and j = J . By using the identities
E = k̂2

0/2 and E − VL = k̂2
L/2 we get the two second order discretized TBCs

(
1

2
k̂2

0h
2 − 1 + ik̂0h

)

ψ0 + ψ1 = 2ik̂0h (2.28a)

and

ψJ−1 +

(
1

2

(

k̂2
0 − 2VL

)

h2 − 1 + i

√

k̂2
0 − 2VLh

)

ψJ = 0. (2.28b)

Before we show the existence and uniqueness of the solution of the described numerical
scheme together with the discretized TBCs, we prove the discrete analogon of integration by
parts.
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Lemma 2.2. Let {xj} , j = 0, . . . , J, with the positive step size h = xj − xj−1,∀j = 1, . . . , J,
be given. Let {fj} and {gj} be the discretization of f : x 7→ f(x) and g : x 7→ g(x) with the
approximations f (xj) ≈ fj and g (xj) ≈ gj . Then

J−1∑

j=1

(

Dfwd
h fj

)

gj = −
J−1∑

j=1

fj

(

Dbwd
h gj

)

− 1

h
f1g0 +

1

h
fjgJ−1.

Proof. The left hand side of the above equation can be written in the form

J−1∑

j=1

(

Dfwd
h fj

)

gj =
1

h

J−1∑

j=1

(fj+1 − f1) gj =
1

h
(−f1g1 + f2g1 − . . .− fJ−1gJ−1 + fJgJ−1) .

By adding

0 = −1

h
f1g0 +

1

h
fjgJ−1 +

1

h
f1g0 −

1

h
fjgJ−1,

we get

J−1∑

j=1

(

Dfwd
h fj

)

gj =
1

h
(f1g0 − f1g1 + . . .+ fJ−1gJ−2 − fJ−1gJ−1) −

1

h
f1g0 +

1

h
fjgJ−1

= −
J−1∑

j=1

fj

(

Dbwd
h gj

)

− 1

h
f1g0 +

1

h
fjgJ−1.

Existence and uniqueness of the solution of the numerical scheme together with the dis-
cretized TBCs is shown in

Theorem 2.3 (presented in [4] without proof). Let {Vj} , j = 0, . . . , J, and E > max {0, VL} be

given, and assume h < min
{√

2
E ,
√

2
E−VL

}

. Then the discrete BVP (2.19) with the discretized

TBCs (2.28) has a unique solution {ψj} , j = 0, . . . , J .

Proof. In order to show that the discrete BVP (2.19) together with the discretized TBCs (2.28)
has a unique solution we follow the ideas of the proof of Thm. 2.1 on a purely discrete level. To
do this, we rewrite the discrete BVP (2.19) in the form

Dstd
h ψj = −2 (E − Vj)ψj .

Moreover, we rewrite the discretized TBCs in the form

−γ1ψ0 + ψ1 = η1

and
ψJ−1 − γ2ψJ = η2,

with

γ1 = 1 − 1

2
k̂2

0h
2 − ik̂0h,

γ2 = 1 − 1

2

(

k̂2
0 − 2VL

)

h2 − i

√

k̂2
0 − 2VLh,

and

η1 = 2ik̂0h,

η2 = 0.
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The discrete BVP together with the discretized TBCs form a system of linear equations. If
the coefficient matrix of this system is regular then the solution is unique. By showing that the
homogeneous case of the TBCs, i.e. η1 = η2 = 0, implies that the discrete solution is zero at
every grid point, we prove that the coefficient matrix is regular.

Now let us write the homogeneous, discretized TBCs in the form

hDbwd
h ψ1 = (γ1 − 1)ψ0,

and
hDbwd

h ψJ =
(
γ−1

2 − 1
)
ψJ−1.

We sum up the discrete BVP for j = 1, . . . , J − 1, which gives

J−1∑

j=1

Dstd
h ψj = −2

J−1∑

j=1

(E − Vj)ψj .

By multiplying this equation by the complex conjugate ψ̄j of ψj we get

−2
J−1∑

j=1

(E − Vj) |ψj |2 =
J−1∑

j=1

(

Dstd
h ψj

)

ψ̄j .

Now we use Lem. 2.2 and the obvious property

Dstd
h = Dbwd

h Dfwd
h = Dfwd

h Dbwd
h ,

to obtain

−2
J−1∑

j=1

(E − Vj) |ψj |2 =
J−1∑

j=1

(

Dfwd
h

(

Dbwd
h ψj

))

ψ̄j

= −
J−1∑

j=1

(

Dbwd
h ψj

)(

Dbwd
h ψ̄j

)

− 1

h
ψ̄0D

bwd
h ψ1 +

1

h
ψ̄J−1D

bwd
h ψJ

= −
J−1∑

j=1

∣
∣
∣Dbwd

h ψj

∣
∣
∣

2
− 1

h
ψ̄0D

bwd
h ψ1 +

1

h
ψ̄J−1D

bwd
h ψJ .

At this point by apply the homogeneous, discretized TBCs. It yields

−2
J−1∑

j=1

(E − Vj) |ψj |2 = −
J−1∑

j=1

∣
∣
∣Dbwd

h ψj

∣
∣
∣

2
− 1

h2
(γ1 − 1) |ψ0|2 +

1

h

(
γ−1

2 − 1
)
|ψJ−1|2 .

By taking the imaginary part of this equation it reduces to

0 = − Im γ1 |ψ0|2 + Im γ−1
2 |ψJ−1|2 .

Since
Im γ1 = −k̂0h < 0,

and

Im γ−1
2 = − 1

|γ2|2
Im γ2 =

1

|γ2|2
√

k̂2
0 − 2VLh > 0,

we end up with the equation

0 = k̂0h |ψ0|2 +
1

|γ2|2
√

k̂2
0 − 2VLh |ψJ−1|2 .
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This implies that |ψ0|2 = |ψJ−1|2 = 0 and hence, ψ0 = ψJ−1 = 0. By using the homogeneous,
discrete TBCs we get ψ1 = 0 and ψJ = 0. Successively applying the discrete BVP gives ψj = 0
for j = 0, . . . , J and hence, the discrete solution vanishes at every grid point if the discretized
TBCs are homogeneous. Thus, the coefficient matrix of the system of linear equations formed
by the discrete BVP and the two discretized TBCs is regular and therefore, the discrete solution
is unique.

Let us recall the discrete waves in the exterior domains

ψj = eik̂h,0jh, j ≤ 0,

and

ψj = eik̂h,Ljh, j ≥ J.

Suppose that they are solutions to the difference scheme in a small vicinity of the two boundaries,
i.e. j = 0, 1 and j = J−1, J . Then they should also satisfy the discretized TBCs (2.28). However,
at the left boundary we get

2ik̂0h =
(

Eh2 − 1 + ik̂0h
)

ψ0 + ψ1

=
(

Eh2 − 1 + ik̂0h
)

+ eik̂h,0h

=
(

Eh2 − 1 + ik̂0h
)

+
(

1 − Eh2 + i
√

2Eh2 − E2h4
)

= ik̂0h+ ik̂0h

√

1 − k̂2
0h

2/4
︸ ︷︷ ︸

6=1

6= 2ik̂0h,

which is a contradiction. A similar contradiction can be found at the right boundary.

The reason is that the TBCs are based on the analytical solution as derived in Sec. 2.1. The
wave vector of the analytical solution, see Eq. (2.8), however, is different from the discrete wave
vector (2.25). Hence, the discretized TBCs model exterior domains whose physical properties
(i.e. wave vector and dispersion relation) are discretization of the analytical properties. Inside
the computational domain, however, we use the FDS (2.19) that implies a discrete wave vector
and a discrete dispersion relation. In other words, a wave coming from −∞ and entering the
semiconductor at x = 0 is refracted at the boundary x = 0 as it comes from a media with the
analytical dispersion relation and enters a media with the discrete dispersion relation. This
leads to spurious oscillations in the numerical solutions as shown in the following example.

Let us set V ≡ 0, L = 1, h = 1/100 and E = 500. The analytical solution is given by

ψ(x) = eik̂x,

with k̂ =
√

2E. Fig. 2.2(a) shows a comparison of the modulus of the analytical solution and
the discrete solution. We observe that the modulus of the discrete solution oscillates, while the
modulus of the analytical solution is constantly 1. These oscillations decrease for smaller step
sizes but they do not vanish. The phase of the discrete solution also differs from the phase
of the analytical solution, see Fig. 2.2(b). This error, however, is not related to the spurious
oscillations of the modulus but can be explained with the difference between the analytical and
discrete wave vector, see Fig. 2.1. Since the discrete wave vector is greater than the analytical
wave vector, the wave length of the discrete solution is smaller than the wave length of the
analytical solution.
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Figure 2.2: Comparison of the analytical solution ψ(x) = eik̂x and the discrete solution of the
second order standard FDS using discretized TBCs for a step size h = 1/100, an energy E = 500
and a potential V ≡ 0.
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2.5 Discrete Transparent Boundary Conditions

In this section we will derive the discrete transparent boundary conditions (DTBCs) of the
single-band model. DTBCs are derived on a fully discrete level. This means that they are
deduced with the help the discrete exterior solution as given in Eq. (2.20). We assume that
the discrete exterior solution holds in a small vicinity of the two boundaries. Consequently, the
refraction at the boundaries, resulting in spurious oscillations, vanishes completely.

Let us recall the right-traveling discrete wave ψj = eik̂hjh and the left-traveling discrete

wave ψj = e−ik̂hjh with discrete amplitude ψ̂h = 1. Let k̂h,0 denote the discrete wave vector

in the left exterior domain x ≤ 0, i.e. with V ≡ 0, and k̂h,L the discrete wave vector in the
right exterior domain x ≥ L, i.e. with V ≡ VL. We apply these discrete waves to the reflection
and transmission conditions (2.16) and consider that they hold in a small vicinity of the two
boundaries, i.e. j = 0, 1 and j = J − 1, J respectively. It yields

ψj = ψin
j + ψr

j = eik̂h,0xj + re−ik̂h,0xj , j = 0, 1,

and
ψj = ψt

j = teik̂h,Lxj , j = J − 1, J.

By eliminating the reflection and transmission coefficients we obtain the DTBCs

−ψ0e
−ik̂h,0h + ψ1 = 2i sin k̂h,0h, (2.29a)

and
ψJ−1e

ik̂h,Lh − ψJ = 0, (2.29b)

cf. the TBCs (2.17b) and (2.17c).
Let us recall the discretized TBCs (2.28). We expand the exponential function and the sine

function in the left DTBC (2.29a). Keeping terms up to second order gives

−
(

1 − ik̂h,0h− 1

2
k̂2

h,0h
2

)

ψ0 + ψ1 = 2ik̂h,0h.

If we replace the discrete wave vector k̂h,0 by the analytical wave vector k̂0 the above equation
becomes (

1

2
k̂2

0h
2 − 1 + ik̂0h

)

ψ0 + ψ1 = 2ik̂0h,

which equals the left discretized TBC. Similarly, we can deduce the right discretized TBC from
the right DTBC.

Now we can reformulate Thm. 2.3 for the DTBCs.

Theorem 2.4 (presented in [4] without proof). Let {Vj} , j = 0, . . . , J, and E > max {0, VL}
be given, and assume h < min

{√
2
E ,
√

2
E−VL

, π
k̂h,0

, π
k̂h,L

}

. Then the discrete BVP (2.19) with

the DTBCs (2.29) has a unique solution {ψj} , j = 0, . . . , J .

Proof. We show that for the homogeneous DTBCs the discrete solution is zero at every grid
point. Therefore, we write the homogeneous DTBCs in the form

hDbwd
h ψ1 = (γ1 − 1)ψ0

and
hDbwd

h ψJ =
(
γ−1

2 − 1
)
ψJ−1,

with
γ1 = e−ik̂h,0h
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and

γ2 = e−ik̂h,Lh.

Analogously to the proof of Thm. 2.3, we multiply the sum of the discrete BVP for j =
1, . . . , J − 1 by ψ̄j , apply Lem. 2.2 and take the imaginary part. This yields

0 = − Im γ1 |ψ0|2 + Im γ−1
2 |ψJ−1|2 ,

with

Im γ1 = − sin k̂h,0h < 0, h <
π

k̂h,0

,

and

Im γ−1
2 = − 1

|γ2|2
Im γ2 = sin k̂h,0h > 0, h <

π

k̂h,L

.

Hence, we end up with the equation

0 = sin k̂h,0h |ψ0|2 + sin k̂h,Lh |ψJ−1|2 ,

that implies |ψ0|2 = |ψJ−1|2 = 0. Thus, we have ψ0 = ψJ−1 = 0 and by using the homogeneous
DTBCs we get ψ1 = 0 and ψJ = 0. Successively applying the discrete BVP gives ψj = 0
for j = 0, . . . , J , and hence, the discrete solution vanishes at every grid point if the DTBCs
are homogeneous. This implies that the coefficient matrix of the system of linear equations
formed by the discrete BVP and the two DTBCs is regular and therefore, the discrete solution
is unique.

In the remainder of this section we will show that the use of the DTBCs in fact does not
lead to spurious oscillations of the modulus of the numerical solution. Again we set V ≡ 0,
L = 1, h = 1/100 and E = 500. The analytical solution is given by

ψ(x) = eik̂x,

with k̂ =
√

2E. The modulus of the analytical solution is 1. Fig. 2.3(a) shows that the modulus
of the discrete solution coincides with the modulus of the analytical solution. As in the previous
example when using discretized TBCs the phase of the discrete solution differs slightly from
the phase of the analytical solution near the right boundary, see Fig. 2.3(b). This can also be
seen in Fig. 2.3(a), where the wave length of the real part of the analytical solution is greater
than the wave length of the real part of the discrete solution. Recall that this error is directly
related with the difference of the analytical and discrete wave vector, see Fig. 2.1. Since the
discrete wave vector is greater than the analytical wave vector the wave length of the discrete
solution is smaller than the wave length of the analytical solution. Note that this error tends
to zero for h→ 0.

2.6 Alternative Finite Difference Schemes

Before we will examine the numerical results of more advanced physical examples we will derive
and compare alternative FDSs. Our aim is to improve the convergence of the scheme or to
develop schemes that solve the problem exactly if certain conditions are fulfilled.

2.6.1 The Numerov Discretization

We start with the so-called Numerov discretization, see [33], [34], that is of higher order than
the standard discretization.
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(a) Real parts of the analytical (dotted line) and discrete (solid line) solutions and modulus (dashed line) of
the discrete solution, which coincides with the modulus of the analytical solution.
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Figure 2.3: Comparison of the analytical solution ψ(x) = eik̂x and the discrete solution of the
second order standard FDS using DTBCs for a step size h = 1/100, an energy E = 500 and a
potential V ≡ 0.
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Let us consider the Schrödinger equation of the BVP (2.17), and let us rewrite it in the form

ψxx = −2 (E − V (x))ψ, 0 < x < L. (2.30)

As before, we use the uniform grid xj = jh, j = 0, . . . , J with L = Jh. From Eq. (2.30)
together with the standard second order finite difference operator Dstd

h we find that

h2ψ
(iv)
j = h2 d2

dx2
ψxx (x)

∣
∣
∣
∣
x=xj

= h2

(

−2
d2

dx2
((E − V (x))ψ)

∣
∣
∣
∣
x=xj

)

= h2
(

−2Dstd
h ((E − Vj)ψj) + O

(
h2
))

= −2 (E − Vj+1)ψj+1 + 4 (E − Vj)ψj − 2 (E − Vj−1)ψj−1 + O
(
h4
)
.

(2.31)

On the other hand, the Taylor series

ψ(x± h) = ψ(x) ± hψx(x) +
h2

2
ψxx(x) ± h3

6
ψxxx(x) +

h4

24
ψ(iv)(x) ± h5

96
ψ(v)(x) + O(h6)

gives

ψ(x+ h) + ψ(x− h) = 2ψ(x) + h2ψxx(x) +
h4

12
ψ(iv)(x) + O(h6),

which implies

h2ψ
(iv)
j =

12

h2
(ψj+1 − 2ψj + ψj−1) − 12 ψxx(x)|x=xj

+ O(h4).

If we apply Eq. (2.30) to the above equation we get

h2ψ
(iv)
j =

12

h2

(
ψj+1 − 2

(
1 − (E − Vj)h

2
)
ψj + ψj−1

)
+ O(h4). (2.32)

A comparison of Eqs. (2.31) and (2.32) gives the Numerov FDS

(

1 +
h2

6
(E − Vj+1)

)

ψj+1 − 2

(

1 − 5h2

6
(E − Vj)

)

ψj

+

(

1 +
h2

6
(E − Vj−1)

)

ψj−1 = 0, j = 1, . . . , J − 1. (2.33)

The Numerov FDS is of of fourth order if ψ ∈ C6(0, L) compared to second order accuracy of
the standard FDS if ψ ∈ C4(0, L).

Now we will examine the discrete exterior problem of the Numerov FDS with V constant. We
want to determine a solution of the discrete exterior problem in order to apply the DTBCs (2.29).

If V is constant Eq. (2.33) is a linear second order difference equation with constant coeffi-
cients whose solution takes the form

ψj = ψ̂hα
j = ψ̂he

ikhjh, (2.34)

with α ∈ C. Again we will refer to ψ̂h as the discrete amplitude of the discrete wave ψj and

kh = −i
1

h
ln (α) =

1

h
(arg (α) − i ln |α|) (2.35)
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as the discrete wave vector. Analogously to the standard FDS we get the discrete solution α by
applying Eq. (2.34) to Eq. (2.33). Under the assumption that the energy E satisfies the energy
condition (2.7), i.e.

E > V,

and the step size h satisfies

h <
3√

E − V
, (2.36)

α is complex and reads

α1,2 = 1 − 6 (E − V )h2

6 + (E − V )h2
± i

√

24 (E − V )h2 (3 − (E − V )h2)

6 + (E − V )h2
. (2.37)

The modulus of α is

|α1,2| =

(

1 − 6 (E − V )h2

6 + (E − V )h2

)2

+
24 (E − V )h2

(
3 − (E − V )h2

)

(6 + (E − V )h2)2
= 1.

Thus, the discrete wave vector kh is real and takes the form

kh = ±k̂h, (2.38)

with the propagation coefficient

k̂h =
1

h
arg (α) =

1

h
arccos

Reα

|α| =
1

h
arccos

(

1 − 6 (E − V )h2

6 + (E − V )h2

)

.

Again we can neglect to add the term n2π
h , n ∈ Z, to this formula since for any n 6= 0 this term

diverges for h → 0. On the other hand, it is easy to show that the discrete wave vector kh as
given in Eq. (2.38), i.e. with n = 0, tends to the analytical wave vector k as given in Eq. (2.8) for
h→ 0 and ~ = m* = 1. Fig. 2.4 shows the discrete wave vector k̂h of the Numerov FDS versus
the number of grid points J = 1/h compared to the analytical wave vector k̂ for an energy
E = 500 and a potential V = 0. Considering that the step size h has to satisfy Eq. (2.36), i.e.
h < 1/13 in our example, the Numerov FDS overestimates the wave vector for any admissible
step size h. Compared to the discrete wave vector of the standard FDS, see Fig. 2.1, the discrete
wave vector of the Numerov FDS gives a better approximation of the analytical wave vector.

Hence, we get two traveling waves, the right-traveling wave

ψj = αj
1 = eik̂hjh,

and the left-traveling wave

ψj = αj
2 = e−ik̂hjh.

On the other hand, if the step size h does not satisfy the step size restriction (2.36) or the
energy E does not satisfy the energy condition (2.7), α is real and yields evanescent waves.

Finally, we derive the discrete dispersion relation of the Numerov FDS in the same way as
for the standard FDS. The wave ψj = ψ̂eikhjh implies

ψj+1e
−ikhh = ψj = ψj−1e

ikhh,

and hence, applied to the Numerov difference equation (2.33) we get

E = ENum
h (k) =

6

5 + cos khh

2

h2
sin2 khh

2
. (2.39)

Now we will prove an analogon to Thm. 2.4.
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Figure 2.4: Analytical wave vector and discrete wave vector of the Numerov FDS against the
number of grid points J = 1/h for an energy E = 500 and a potential V = 0.

Theorem 2.5. Let {Vj} , j = 0, . . . , J, and E > max {0, VL} be given, and suppose

h < min

{√

3

E
,

√
3

E − VL
,

√

6

|E − V1|
,

√

6

|E − VJ−1|
,
π

k̂h,0

,
π

k̂h,L

}

.

Then the discrete BVP (2.33) of the Numerov FDS with the DTBCs (2.29) has a unique solution
{ψj} , j = 0, . . . , J .

Proof. We show that for homogeneous DTBCs the discrete solution is zero at every grid point.
Therefore, let us introduce

ϕj = σjψj ,

with σj = 1 + h2

6 (E − Vj) ∈ R. Note that σj > 0 for j = 0, 1, J − 1, J .
Now we can rewrite the Numerov FDS in the form

ϕj+1 − 2ϕj + ϕj−1 = −2h2 (E − Vj)ψj = −2h2 (E − Vj)σ
−1
j ϕj ,

or
Dstd

h ϕj = −2 (E − Vj)σ
−1
j ϕj .

The homogeneous left DTBC can be written in the form

−γ1ψ0 + ψ1 = −γ1σ
−1
0 ϕ0 + σ−1

1 ϕ1,

that reduces to
Dbwd

h ϕ1 =
(
γ1σ1σ

−1
0 − 1

)
ϕ0,

with
γ1 = e−ik̂h,0h.

On the other hand, the right DTBC is

ψJ−1 − γ2ψJ = σ−1
J−1ϕJ−1 − γ2σ

−1
J ϕJ ,
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which becomes
Dbwd

h ϕJ =
(
γ−1

2 σJσ
−1
J−1 − 1

)
ϕJ−1,

with
γ2 = e−ik̂h,Lh.

Analogously to the proof of Thm. 2.3, we multiply the sum of the Numerov FDS for j =
1, . . . , J − 1 by ϕ̄j , apply Lem. 2.2 and take the imaginary part. This gives

0 = −σ1σ
−1
0 Im γ1 |ϕ0|2 + σJσ

−1
J−1 Im γ−1

2 |ϕJ−1|2 ,

with
Im γ1 = − sin k̂h,0h < 0, h <

π

k̂h,0

,

and

Im γ−1
2 = − 1

|γ2|2
Im γ2 = sin k̂h,0h > 0, h <

π

k̂h,L

.

Hence, we end up with the equation

0 = σ1σ
−1
0 sin k̂h,0h |ϕ0|2 + σJσJ−1 sin k̂h,Lh |ϕJ−1|2 .

Since σj > 0 for j = 0, 1, J − 1, J , the above equation implies |ϕ0|2 = |ϕJ−1|2 = 0. Thus,
ψ0 = ψJ−1 = 0 and by using the homogeneous DTBCs we get ψ1 = 0 and ψJ = 0. Successively
applying the Numerov FDS gives ψj = 0 for j = 0, . . . , J and hence, the discrete solution
vanishes at every grid point if the DTBCs are homogeneous. Thus, the coefficient matrix of the
system of linear equations formed by the discrete BVP and the two DTBCs is regular. This
implies that the discrete solution is unique.

Let us recall the numerical example in Sec. 2.5. When using the standard FDS we observed
a phase error yielding a smaller discrete wave length than the analytical wave length. This is
also the case for the Numerov FDS but the error is significantly smaller so that the discrete
solution coincides with the analytical solution for the step size h = 1/100 and the used level of
detail in Fig. 2.3.

2.6.2 The Mickens Discretization

We recall the Schrödinger equation (2.1)

ψxx + 2 (E − V (x))ψ = 0, 0 < x < L. (2.40)

Let us assume that the potential V (x) ≡ V is constant. As shown in Sec. 2.1 the Schrödinger
equation (2.40) yields a traveling wave if E > V and an evanescent wave otherwise. Hence, in
the case 2 (E − V ) ≡ c1 > 0, Eq. (2.40) has the solution

ψ (x) = a1 cos (
√
c1x) + b1 sin (

√
c1x) , (2.41a)

and if 2 (E − V ) ≡ −c2 < 0, Eq. (2.40) has the solution

ψ (x) = a2 cosh (
√
c2x) + b2 sinh (

√
c2x) , (2.41b)

where a1, a2, b1, b2 ∈ C are arbitrary constants. The Mickens nonstandard finite difference

discretization

ψj+1 − 2 cos (h
√
c1)ψj + ψj−1 = 0, j = 1, . . . , J − 1, (2.42a)

if E > V , and
ψj+1 − 2 cosh (h

√
c2)ψj + ψj−1 = 0, j = 1, . . . , J − 1, (2.42b)
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if E ≤ V , is a so-called exact FDS of Eq. (2.40) with the solutions (2.41), cf. [29]. An FDS
is said to be exact if the numerical solution equals the analytical solution at the grid points,
see [27]. It is easy to see that if V is constant the difference equation (2.42a) has the solution
(2.41a) whereas the difference equation (2.42b) has the solution (2.41b). Therefore, the Mickens
FDS gives a numerical solution that is equal to the analytical solution at the grid points, in
other words, the Mickens FDS is exact.

Now we allow the potential V (x) to vary inside the computational domain (0, L). The
Mickens FDS (2.42) becomes

ψj+1 − 2Djψj + ψj−1 = 0, j = 1, . . . , J − 1, (2.43)

with

Dj =







cos

(

h
√

2 (E − Vj)

)

, E > Vj ,

cosh

(

h
√

2 (Vj − E)

)

, E ≤ Vj .

While the Mickens FDS (2.43) is exact for a constant potential V it is formally of order O(h2)
if the potential V is not constant, cf. [15].

In order to use the DTBCs for the Mickens FDS (2.43) we have to determine a discrete
solution of the Mickens FDS in the exterior domains. The Mickens FDS is exact in the exterior
domains since the potential V is assumed to be constant in these domains. Hence, the discrete
solution is given by the analytical solution as derived in Sec. 2.1. The discrete wave vector kh of
the Mickens FDS is equal to the analytical wave vector k as given in Eq. (2.8), and the discrete
dispersion relation EMic

h (k̂) is equal to the analytical dispersion relation (2.13).

Theorem 2.6. Let {Vj} , j = 0, . . . , J, and E > max {0, VL} be given, and assume h <

min
{

π
k̂h,0

, π
k̂h,L

}

. Then the discrete BVP (2.42) of the Mickens FDS with the DTBCs (2.29) has

a unique solution {ψj} , j = 0, . . . , J .

Proof. Let us rewrite the Mickens FDS in the form

Dstd
h ψj = − 2

h2
(1 −Dj)ψj .

Since − 2
h2 (1 −Dj) ∈ R for all j = 1, . . . , J − 1, it becomes clear that this theorem is a direct

corollary of Thm. 2.4 and hence, the solution is unique.

Since this scheme is exact for a constant potential, the Mickens FDS using DTBCs does not
give an error when applied to the numerical example we introduced in Sec. 2.5. Later we will
analyze its numerical behavior for non-constant potentials V and compare it to the other FDSs.

2.6.3 The Numerov-Mickens Discretization

Chen et al. [15] combined the Numerov discretization with the Mickens discretization and pro-
posed the so-called combined Numerov-Mickens finite-difference scheme

(

1 +
h2

6
(E − Vj+1)

)

ψj+1 − 2Djψj +

(

1 +
h2

6
(E − Vj−1)

)

ψj−1 = 0, (2.44)

for j = 1, . . . , J − 1, with

Dj =







cos

(

h
√

2 (E − Vj)

)

, E > Vj ,

cosh

(

h
√

2 (Vj − E)

)

, E ≤ Vj .
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It can be shown that the Numerov-Mickens FDS (2.44) is of order O
(
h4
)
, just as the

Numerov FDS, and that it is an exact FDS if the potential V is constant, just as the Mickens
FDS, cf. [15].

Let us now study the discrete exterior problem of the Numerov-Mickens FDS with a constant
potential V . If V is constant Eq. (2.44) is a linear second order difference equation with constant
coefficients whose solution takes the form

ψj = ψ̂hα
j = ψ̂he

ikhjh, (2.45)

with α ∈ C, the discrete amplitude ψj and the discrete wave vector

kh = −i
1

h
ln (α) =

1

h
(arg (α) − i ln |α|) . (2.46)

By applying Eq. (2.45) to Eq. (2.44) and under the assumption that the energy E satisfies the
energy condition (2.7), i.e.

E > V,

α is complex and reads

α1,2 =
cos
(

h
√

2 (E − V )
)

1 + h2 (E − V ) /6
± i

√
√
√
√

1 −
cos2

(

h
√

2 (E − V )
)

(1 + h2 (E − V ) /6)2
. (2.47)

Note that the step size h has to satisfy

cos2
(

h
√

2 (E − V )
)

<
(
1 + h2 (E − V ) /6

)2
. (2.48)

But this condition is fulfilled for any step size h > 0 since the left hand side of Eq. (2.48) is in
[0, 1], while the right hand side is always greater than 1. It is easy to show that |α| = 1 and
hence, the discrete wave vector kh of the Numerov-Mickens FDS is real and reads

kh = ±k̂h, (2.49)

with

k̂h =
1

h
arg (α) =

1

h
arccos

Reα

|α| =
1

h
arccos

cos
(

h
√

2 (E − V )
)

1 + h2 (E − V ) /6
∈ (0, π) .

Again we shall neglect to add the term n2π
h , n ∈ Z, to this formula since for any n 6= 0 this

term diverges for h→ 0. However, the limit for h→ 0 of the discrete wave vector kh as given in
Eq. (2.49), i.e. with n = 0, is undefined. For an energy E = 500 and a potential V = 0 Fig. 2.5
shows the discrete wave vector kh = k̂h against the number of grid points J = 1/h. The value
of the analytical wave vector for E = 500 and V = 0 is k =

√

2 (E − V ) ≈ 31.6.
This illustrates the bad numerical behavior of the Numerov-Mickens FDS. Nevertheless, we

will continue to analyze this FDS and formulate DTBCs with the right-traveling wave

ψj = αj
1 = eik̂jh,

and the left-traveling wave

ψj = αj
2 = e−ik̂jh.

An explicit formula of the discrete dispersion relation of the Numerov-Mickens FDS cannot
be derived. However, the discrete wave ψj = ψ̂eikhjh implies

ψj+1e
−ikh = ψj = ψj−1e

ikh.
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Figure 2.5: Discrete wave vector of the Numerov-Mickens FDS against the number of grid
points J = 1/h for an energy E = 500 and a potential V = 0. The analytical wave vector is
k =

√

2 (E − V ) ≈ 31.6.

Applied to the difference equation (2.44) we get

cos

(

h
√

2
(
ENumMic

h − v
)
)

−
(
h2

6
cos kh

)
(
ENumMic

h − V
)
− cos kh = 0. (2.50)

By numerically evaluating Eq. (2.50) for h = 1/100 and V = 0 with the MATLAB procedure
fsolve using the tolerance 10−9, we obtain the discrete dispersion relation ENumMic

h as shown
in Fig. 2.7.

Although the bad numerical behavior has been illustrated we shall prove

Theorem 2.7. Let {Vj} , j = 0, . . . , J, and E > max {0, VL} be given, and assume

h < min

{√

6

|E − V1|
,

√

6

|E − VJ−1|
,
π

k̂h,0

,
π

k̂h,L

}

.

Then the discrete BVP (2.44) of the combined Numerov-Mickens FDS with the DTBCs (2.29)
has a unique solution {ψj} , j = 0, . . . , J .

Proof. Let us introduce

ϕj = σjψj ,

with σj = 1 + h2

6 (E − Vj) ∈ R. Note that σj > 0 for j = 0, 1, J − 1, J .

We rewrite the Numerov-Mickens FDS in the form

Dstd
h ϕj = − 2

h2

(

1 − σ−1
j Dj

)

ϕj .

Since − 2
h2

(

1 − σ−1
j Dj

)

∈ R for all j = 1, . . . , J − 1, it becomes clear that this theorem is a

direct corollary of Thm. 2.5 and hence, the solution is unique.
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Figure 2.6: Comparison of the analytical solution ψ(x) = eik̂x and the discrete solution of the
combined Numerov-Mickens FDS using DTBCs for a step size h = 1/100, an energy E = 500
and a potential V ≡ 0.
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The bad numerical properties of Numerov-Mickens FDS that were shown by examining the
limit of the discrete wave vector kh can also be observed when applying the Numerov-Mickens
FDS with corresponding DTBCs to the numerical example in Sec. 2.5. Fig. 2.6(a) shows that
the modulus of the discrete solution is coincides with the modulus of the analytical solution as it
did for the other FDSs, but the phase of the discrete solution differs significantly from the phase
of the analytical solution, see Fig. 2.6(b). This results in a significantly smaller wave length
of the real part of the discrete solution than the wave length of the real part of the analytical
solution, see Fig. 2.6(a).

2.6.4 Comparison of the Discrete Dispersion Relations

In the previous sections we introduced FDSs for the BVP (2.17) and derived the corresponding
discrete dispersion relations. Now we want to compare these discrete dispersion relations with
the analytical quantum mechanical dispersion relation (2.13). Fig. 2.7 shows the analytical and
discrete dispersion relations for a step size h = 1/100 and a potential V = 0.

All discrete dispersion relations except the dispersion relation of the Mickens FDS are pe-
riodic in the wave vector kh with the period 2π

h ≈ 628. We can see that for small values of
the wave vector, i.e. kh < 100, the dispersion relation of the Numerov FDS coincides with the
analytical dispersion relation for the used level of detail in Fig. 2.7, while the dispersion rela-
tion of the combined Numerov-Mickens FDS differs significantly from the analytical dispersion
relation. Particularly, for E = 500, the value of the energy we used in our examples, the er-
ror of the dispersion relation of the Numerov-Mickens FDS is greater than of the other FDSs.
This explains the significantly greater phase error of the Numerov-Mickens FDS we observed in
Sec. 2.6.3.

2.7 Numerical Examples

2.7.1 The Single Barrier Potential

In this section we analyze the results of the four introduced FDSs in the case of a single barrier
potential. We consider a semiconductor of length L composed of two different materials, e.g.
GaAs (gallium arsenide) and AlGaAs (aluminium gallium arsenide), where the latter is built
between two parts of the first material. Let 0 < x1 < x2 < L and let the domain [x1, x2) be
composed of AlGaAs, while the two outer domains [0, x1) and [x2, L] are composed of GaAs.
V (x) = Ec(x) describes the band edge profile or the variation of the conduction band edge
of the semiconductor materials. We call V0 = ∆Ec = Ec|AlGaAs − Ec|GaAs band edge offset

between the semiconductor materials or band edge discontinuity of the material interface. The
inner domain [x1, x2) is called quantum barrier if its potential V (x) = Ec|AlGaAs is greater than
the potential V (x) = Ec|GaAs of the outer domains and quantum well if it is smaller.

For simplicity we set Ec|GaAs = 0 and we assume that Ec|AlGaAs = 500, i.e. the band edge
offset is V0 = ∆Ec = 500 and we have a quantum barrier at x1 ≤ x < x2. Furthermore, we set
L = 1, x1 = 1/3 and x2 = 2/3. Fig. 2.8 illustrates the band edge profile.

For a single barrier potential the BVP (2.17) can be solved analytically, cf. [21]. Since the
potential V is constant in the three domains [0, x1), [x1, x2) and [x2, L] and by assuming that
the energy E satisfies

E > max {Ec|GaAs , Ec|AlGaAs} = V0 = 500,

the wave function takes the form

ψ(x) = aeik̂x + be−ik̂x, (2.51)
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where the amplitudes a and b are constant in each domain and the wave vector reads

k̂ = k̂(0) =
√

2E, if x ∈ [0, x1) ∪ [x2, L],

and
k̂ = k̂(V0) =

√

2 (E − V0), if x ∈ [x1, x2).

Let us assume that a right-traveling wave with amplitude ψ̂ = 1 enters the semiconductor
at x = 0. Since V (x) = 0 for x ∈ [0, x1), i.e. the same physical properties as in the exterior
domain x < 0, the incoming wave is not reflected but completely transmitted into the domain
[0, x1). At the boundary of the two materials at x = x1 the wave is partly reflected. On the
other hand, in the domain [x2, L] we expect a transmitted, right-traveling wave that leaves the
semiconductor at x = L. For the same reason as at x = 0 we do not expect any reflections of
the transmitted wave at x = L. Thus, the wave function reads

ψ(x) =







ei
√

2Ex + re−i
√

2Ex, if x ∈ [0, x1),

aei
√

2(E−V0)x + be−i
√

2(E−V0)x, if x ∈ [x1, x2),

tei
√

2Ex, if x ∈ [x2, L],

(2.52)

cf. (2.51).
On the other hand, if the energy E satisfies 0 < E ≤ V0, the waves in the domain [x1, x2)

are evanescent and take the form

ψ(x) = aeǩx + be−ǩx,

with
ǩ = ǩ(V0) =

√

2 (V0 − E).

But since ǩ = ik̂ for E ≤ V , Eq. (2.52) is the correct analytical solution also for the case
0 < E ≤ V0. Hence, we can continue with the solution as given in Eq. (2.52) without having to
neglect the case 0 < E ≤ V0 in our numerical examples.
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According to [24], the wave function ψ(x) and its derivative

ψx(x) =







i
√

2Eei
√

2Ex − i
√

2Ere−i
√

2Ex, if x ∈ [0, x1),

i
√

2 (E − V0)ae
i
√

2(E−V0)x − i
√

2 (E − V0)be
−i
√

2(E−V0)x, if x ∈ [x1, x2),

i
√

2Etei
√

2Ex, if x ∈ [x2, L],

are continuous. In particular, they are continuous at the material interfaces at x = x1 and
x = x2. Thus, we get a system of linear equation that yields

r =
−2i

(√

2 (E − V0)
2 −

√
2E

2
)

e2i
√

2Ex1 sin
(√

2 (E − V0)(x1 − x2)
)

(√

2 (E − V0) +
√

2E
)2
ei
√

2(E−V0)(x1−x2) −
(√

2 (E − V0) −
√

2E
)2
e−i

√
2(E−V0)(x1−x2)

a =
2
√

2E
(√

2 (E − V0) +
√

2E
)

e
i
(√

2Ex1−
√

2(E−V0)x2

)

(√

2 (E − V0) +
√

2E
)2
ei
√

2(E−V0)(x1−x2) −
(√

2 (E − V0) −
√

2E
)2
e−i

√
2(E−V0)(x1−x2)

b =
2
√

2E
(√

2 (E − V0) −
√

2E
)

e
i
(√

2Ex1+
√

2(E−V0)x2

)

(√

2 (E − V0) +
√

2E
)2
ei
√

2(E−V0)(x1−x2) −
(√

2 (E − V0) −
√

2E
)2
e−i

√
2(E−V0)(x1−x2)

t =
4
√

2 (E − V0)
√

2Eei
√

2E(x1−x2)

(√

2 (E − V0) +
√

2E
)2
ei
√

2(E−V0)(x1−x2) −
(√

2 (E − V0) −
√

2E
)2
e−i

√
2(E−V0)(x1−x2)

.

(2.53)

This implies that the reflection and transmission coefficients satisfy

|r|2 + |t|2 = 1. (2.54)

Note that the solution of the so-called transfer-matrix method coincides with the analytical
solution in the case of a single barrier potential, cf. [36].

Since we have three domains of the same length the step size h has to be of the form h = 1
3n

with n = 1, 2, . . ., so that the discretized domains also have the same length. Otherwise the
FDSs would not solve the problem as stated above and the results would differ significantly
from the analytical solution.

2.7.1.1 The Transmission Coefficient

First we want to examine the behavior of the transmission coefficient τ = |t| against the energy E
for a given edge band offset V0. In Fig. 2.9 the analytical transmission coefficient τ is compared
with the transmission coefficient of the combined Numerov-Mickens FDS. The transmission
coefficients of the standard FDS, the Numerov FDS and the Mickens FDS coincide with the
analytical transmission coefficient for the level of detail of Fig. 2.9. In order to evaluate the
numerical transmission coefficients we take the modulus of the numerical solution at the right
boundary at x = L. This straightforward procedure is possible since the transmitted wave is not
reflected at the boundary x = L and hence, the modulus of the numerical solutions is constant
behind the barrier. Therefore, the modulus in this domain equals the transmission coefficients
of the numerical schemes.

If |τ | = 1, i.e. there is no reflection and the wave is transmitted completely, we say that
there is a resonance. The first resonance of the analytical transmission coefficient is located at
E = Eresonance ≈ 544.
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Figure 2.9: Analytical transmission coefficient (dotted line) and the transmission coefficient of
the combined Numerov-Mickens FDS (solid line) for the step size h = 1/300. The transmission
coefficients of the standard FDS, the Numerov FDS and the Mickens FDS coincide with the
analytical transmission coefficient for the used level of detail.

2.7.1.2 Numerical Solutions of the Wave Function

In this section we want to compare the numerical results for three different values of the energy
E. We choose the resonance energy E = 544, one smaller energy (E = 510) and one greater
energy (E = 580), see Fig. 2.8. Figs. 2.10–2.12 show a comparison of the modulus and the phases
of the the analytical solution and the solutions of the four FDSs for the step size h = 1/300.
Note that the results of the Numerov FDS and the Mickens FDS coincide with the results of
the standard FDS for the used level of detail in Figs. 2.10–2.12.

For all three energy states the standard FDS, the Numerov FDS and the Mickens FDS give
reasonable results while the combined Numerov-Mickens FDS leads to a significant error.

2.7.1.3 The L2-Error

Next we want to investigate the numerical error of the introduced FDSs for the single barrier
problem. The evaluation of the discrete L2-error, however, is not straightforward for a complex
function. Since the numerical results of a stationary problem such as the BVP (2.17) has an
arbitrary phase, we have to optimize the L2-error with respect to a phase offset ϕ ∈ [−π, π]. In
other words we have to solve the nonlinear problem

∆ψmin
h = min

ϕ∈[−π,π]
∆ψh = min

ϕ∈[−π,π]

1

J + 1

√
√
√
√

J∑

j=0

|ψ(xj) − ψh(xj)eiϕ|2, (2.55)

where ψ denotes the analytical solution and ψh is the numerical solution using the step size
h = 1/J . Fig. 2.13 shows the L2-error ∆ψ300 of the standard FDS against the phase offset ϕ for
the resonance energy E = Eresonance ≈ 544 and the step size h = 1/300. In order to evaluate the
minimal L2-error ∆ψmin

h we discretize the domain [−π, π] with a step size hϕ = 2π/1000 and
analyze the L2-error ∆ψh at every grid point. However, it is unclear why nonlinear optimization
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Figure 2.10: Comparison of the analytical solution (black) of the single barrier problem and
the solutions of the standard FDS (red) and the combined Numerov-Mickens discretization
(magenta) for the step size h = 1/300 and the resonance energy E = Eresonance ≈ 544. Note
that the results of the Numerov FDS and the Mickens FDS coincide with the results of the
standard FDS for the used level of detail.
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(b) Phases of the analytical and numerical solutions.

Figure 2.11: Comparison of the analytical solution (black) of the single barrier problem and
the solutions of the standard FDS (red) and the combined Numerov-Mickens discretization
(magenta) for the step size h = 1/300 and the energy E = 510. Note that the results of the
Numerov FDS and the Mickens FDS coincide with the results of the standard FDS for the used
level of detail.
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Figure 2.12: Comparison of the analytical solution (black) of the single barrier problem and
the solutions of the standard FDS (red) and the combined Numerov-Mickens discretization
(magenta) for the step size h = 1/300 and the energy E = 580. Note that the results of the
Numerov FDS and the Mickens FDS coincide with the results of the standard FDS for the used
level of detail.
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Figure 2.13: L2-error ∆ψh of the standard FDS against the phase offset ϕ for the resonance
energy E = Eresonance ≈ 544 and the step size h = 1/300.

methods such as the MATLAB procedure fminsearch do not give acceptable results for this
problem and hence, cannot be used.

In Fig. 2.14(a) the L2-errors ∆ψmin
h of the standard FDS and the combined Numerov-

Mickens FDS are plotted against the number of grid points J = 1/h for the resonance energy
E = Eresonance ≈ 544. The error of the Numerov FDS and the error of the Mickens FDS coincide
with the error of the standard discretization for the level of detail of Fig. 2.14(a). For these
three FDSs the L2-error is in O(h2). The L2-error of the combined Numerov-Mickens FDS,
however, is only in O(h).

Fig. 2.14(b) shows that the phase shift adjusted L2-errors of the Numerov FDS almost
coincides with the standard FDS and the Mickens FDS, i.e. the Numerov FDS turns out to be
not of higher order than the standard FDS and the Mickens FDS. Although the higher order
of the Numerov FDS is considered to be an advantage compared to the standard FDS and the
Mickens FDS, it is this property that leads to the observed error of the scheme. By applying
the identity

ψxx =

((
ψx

ψ

)

x

+

(
ψx

ψ

)2
)

ψ

to the Schrödinger equation (2.1) we get

(
ψx

ψ

)

x

+

(
ψx

ψ

)2

= V (x) − E. (2.56)

Under the assumption of the Numerov FDS, i.e. that the discretization is of fourth order, the
left hand side of Eq. (2.56) is second order differentiable. The right hand side, however, is not
second order differentiable as the potential V comprises two jump discontinuities at the barrier’s
ends. For the standard discretization, the left hand side of Eq. (2.56) is continuous but not
necessarily differentiable. Hence, the jump discontinuities of the potential also lead to an error
but we expect this error to be smaller than for the Numerov scheme.
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Figure 2.14: Comparison of the L2-errors of the numerical schemes for the resonance energy
E = Eresonance ≈ 544. Note that the L2-errors of the Numerov FDS and the Mickens FDS
coincide with the L2-error of the standard FDS for the used level of detail in (a), while the
L2-error of the Mickens FDS coincides with the L2-error of the Numerov FDS for the used level
of detail in (b).
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An approach to improve the behavior of the Numerov FDS for a discontinuous potential
V is to use the standard FDS of the Schrödinger equation at the point of discontinuity of the
potential V and the Numerov FDS elsewhere. Although spurious oscillations due to possible
incompatibility of the two schemes cannot be observed, numerical testing shows that the results
cannot be improved significantly.

2.7.2 The Double Barrier Potential – Quantum Tunneling

As a final numerical example we will examine the results of the introduced FDSs for the double
barrier potential. In particular, we want to check if the FDSs model the so-called quantum

tunneling correctly. If there exists a resonance for an energy E that is smaller than the potential
barrier V0 we call this state quantum tunneling.

Analogously to the single barrier problem we can derive an analytical solution. Let 0 <
x1 < x2 < x3 < x4 < L. Assume that the domains [x1, x2) and [x3, x4) are quantum barriers
with V (x) = V0, while the domains [0, x1), [x2, x3) and [x4, L] have zero potential, i.e. V (x) = 0.
Again let us set V0 = 500. Furthermore, we set L = 1 and xj = j/5, j = 1, . . . , 4.

Since the potential V is piecewise constant the wave function takes the form

ψ(x) = aeik̂x + be−ik̂x,

where the amplitudes a and b are constant in each domain and the wave vector reads

k̂ = k̂(0) =
√

2E, if x ∈ [0, x1) ∪ [x2, x3) ∪ [x4, L],

and

k̂ = k̂(V0) =
√

2 (E − V0), if x ∈ [x1, x2) ∪ [x3, x4).

Note that we do not have to require the energy E to satisfy E > V0, as we illustrated in the
previous section.

Suppose that a right-traveling wave with amplitude ψ̂ = 1 enters the semiconductor from
the left at x = 0. Since V (x) = 0 for x ∈ [0, x1), i.e. the same physical properties as in the
exterior domain x < 0, the incoming wave is not reflected but completely transmitted into the
domain [0, x1). At the potential barrier x = x1 the wave is partially reflected. In domain [x4, L]
we expect a transmitted, right-traveling wave to leave the semiconductor at the right boundary
at x = L. For the same reason as at x = 0 we do not expect any reflections of the transmitted
wave at x = L. Thus, the wave function reads

ψ(x) =







ei
√

2Ex + re−i
√

2Ex, if x ∈ [0, x1),

a1e
i
√

2(E−V0)x + b1e
−i
√

2(E−V0)x, if x ∈ [x1, x2),

a2e
i
√

2Ex + b2e
−i

√
2Ex, if x ∈ [x2, x3),

a3e
i
√

2(E−V0)x + b3e
−i
√

2(E−V0)x, if x ∈ [x3, x4),

tei
√

2Ex, if x ∈ [x4, L],

(2.57)

with the unknown reflection coefficient r, transmission coefficient t and the unknown coefficients
aj , bj , j = 1, . . . , 3.

Since the wave function (2.52) and its derivative

ψx(x) =







i
√

2Eei
√

2Ex − i
√

2Ere−i
√

2Ex, if x ∈ [0, x1),

i
√

2 (E − V0)a1e
i
√

2(E−V0)x − i
√

2 (E − V0)b1e
−i
√

2(E−V0)x, if x ∈ [x1, x2),

i
√

2Ea2e
i
√

2Ex − i
√

2Eb2e
−i

√
2Ex, if x ∈ [x2, x3),

i
√

2 (E − V0)a3e
i
√

2(E−V0)x − i
√

2 (E − V0)b3e
−i
√

2(E−V0)x, if x ∈ [x3, x4),

i
√

2Etei
√

2Ex, if x ∈ [x4, L],
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are continuous at x = xj , j = 1, . . . , 3, cf. [24], we get a system of eight linear equations for the
eight unknown coefficients.

However, we will not state the results of the system of linear equations since the expressions
for the coefficients are very long.

2.7.2.1 The Transmission Coefficient

In this section we will study the transmission coefficient τ = |t| against the energy E. As
explained above we expect a resonance for an energy E that is smaller than the potential barrier
V0. In Fig. 2.15(a) the analytical transmission coefficient τ is compared with the transmission
coefficients of the standard FDS. The results of the Numerov FDS and the Mickens FDS coincide
with the results of the standard FDS. Since the results of the combined Numerov-Mickens FDS
with single barrier potential differed significantly from the analytical results we will omit to use
this FDS for the double barrier potential.

As can be seen in Fig. 2.15(b) the standard FDS, the Numerov FDS and Mickens FDS model
the tunneling resonance with a certain error while the error of the standard FDS is greater than
the error of the Numerov FDS and Mickens FDS. If we choose a smaller step size h the error
decreases.

2.8 Summary

We introduced four different FDSs of the BVP (2.17) and derived for each of them DTBCs.
We showed that all FDSs together with the DTBCs have a unique solution. We found that
the spurious oscillations of the modulus we observed when using discretized TBCs vanish when
using DTBCs instead. Except the Mickens FDS all other introduced FDSs lead to a phase error
in the free scattering state with constant potential that is directly caused by the difference of the
analytical quantum mechanical dispersion relation (2.13) and the discrete dispersion relations
(2.26), (2.39) and (2.50) respectively. We showed that this error vanishes when h → 0 as the
discrete dispersion relations converge to the analytical dispersion relation for h→ 0.

Considering the numerical results we point out that the Mickens FDS is the most promising
FDS we introduced. If the potential is constant the Mickens FDS is an exact FDS and if the
potential is not constant it is of order O(h2). Which is the best possible order of convergence
of the FDSs we introduced since the Numerov FDS which is formally of order O(h4) is in fact
also only O(h2) since it requires the potential to be in C2(0, L). While the standard FDS and
the Numerov FDS are also applicable, the combined Numerov-Mickens FDS, however, leads to
significant errors.

Apart from the list of FDSs we introduced in this chapter there are a plenty of FDSs that
can be used for the stationary linear Schrödinger equation (2.1). However, the chosen FDSs
demonstrate the principle of using FDSs for the Schrödinger equation clearly. The reader is
referred to Simos and Williams [40] for a concise review on FDSs for the Schrödinger equation.
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(b) Analytical and discrete transmission coefficients at the tunneling resonance at E ≈ 269.

Figure 2.15: Analytical transmission coefficient (black), the transmission coefficient of the stan-
dard FDS (red) and the transmission coefficient of the Numerov FDS (green) for the step size
h = 1/300. The transmission coefficient of the Mickens FDS coincides with the transmission
coefficient of the Numerov FDS for the used level of detail in (b), while the transmission coeffi-
cients of the standard FDS, the Numerov FDS and the Mickens FDS coincide with the analytical
transmission coefficient for the used level of detail in (a).





Chapter 3

The Two-Band Kane-Model

As a first step of generalization, we introduce the two-band Kane-model, cf. [22],

HF = EF, x ∈ R, (3.1)

with

H =

(
1
2Eg(x) + E0(x) −iP0(x)

d
dx

−iP0(x)
d
dx −1

2Eg(x) + E0(x)

)

, (3.2)

where P0(x) > 0 denotes the Kane-parameter that is given by the relation

Ep =
2m∗

~2
P 2

0 . (3.3)

The energy Ep is called optical matrix element and is a measure of the coupling of the conduction
and valence band. Eg denotes the so-called band gap which is the difference of the conduction
and valence band edges Ec and Ev, i.e.

Eg(x) = Ec(x) − Ev(x).

E0 is called middle of the band gap and is the arithmetic mean of the conduction and valence
band edges Ec and Ev, i.e.

E0(x) =
Ec(x) + Ev(x)

2
.

In contrast to the approach of the single-band effective mass approximation in Chap. 2, the
Kane-model considers not only the conduction band of the semiconductor but also the valence
band. The two bands are coupled with a first order derivative of the envelope functions Fc(x)
and Fv(x) of the conduction band and valence band respectively. However, the Hamiltonian
H does not contain second order derivatives of F(x) on the diagonal. In other words, the
Kane-model has no second order intra-band coupling.

Again, we consider a semiconductor of length L connected to reservoirs at x = 0 and x = L.
Let us assume that the Kane-parameter P0(x) as well as the band edges Ec(x) and Ev(x) are
constant in the reservoirs, i.e.

P0(x) = P0,0, x ≤ 0,

P0(x) = P0,L, x ≥ L,

and

Eg(x) = Eg,0, x ≤ 0,

Eg(x) = Eg,L, x ≥ L,

and

E0(x) = 0, x ≤ 0,

E0(x) = E0,L, x ≥ L.

43
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3.1 The Exterior Problem and the Dispersion Relation

We will now analyze the exterior problem of the Kane-model. In the exterior domains the Kane-
parameter P0, the band gap Eg and the middle of the band gap E0 are constant. However, we
shall not analyze the exterior domains explicitly. Instead we will state the analytical dispersion
relation and the solution of the free scattering state for some constant Kane-parameter P0, some
constant band gap Eg and some constant middle of the band gap E0.

If P0, Eg and E0 are constant, Eq. (3.1) is a first order system of ODEs with constant
coefficients that can be written in the form

d

dx
F = AF, x ∈ R, (3.4)

with

A =

(
0 i 1

P0

(
E + 1

2Eg − E0

)

i 1
P0

(
E − 1

2Eg − E0

)
0

)

.

As shown in the basic theory on systems of ODEs, e.g. see [41], the solution of Eq. (3.4) takes
the form

F(x) = F̂eκx = F̂eikx, (3.5)

where κ = κ1,2 ∈ C denotes an eigenvalue of the matrix A and F̂ = F̂(k) ∈ C
2 the corresponding

eigenvector. We shall call F̂ amplitude of the vector F of the envelope functions and k = k̂+iǩ =
−iκ wave vector of F with the propagation coefficient k̂ and the attenuation coefficient ǩ. If the
attenuation coefficient ǩ is zero we say that the vector F of the envelope functions is traveling

while it is called evanescent if ǩ is nonzero. In the sequel we shall refer to the vector F of the
envelope functions as envelope wave since it can be expressed in the form of a plane wave.

If we apply the solution (3.5) to the Kane-model (3.1) we get

ĤF̂ = EF̂, (3.6)

with

Ĥ = Ĥ(k) =

(
Ĥ11(k) Ĥ12(k)

Ĥ21(k) Ĥ22(k)

)

=

(
1
2Eg + E0 P0k
P0k −1

2Eg + E0

)

. (3.7)

The characteristic polynomial of Ĥ gives

(E − E0)
2 − 1

4
E2

g − P 2
0 k

2 = 0.

and hence,

k2 =
1

P 2
0

(

(E − E0)
2 − 1

4
E2

g

)

.

If the energy E satisfies the energy condition

|E − E0| >
1

2
Eg, (3.8)

the wave vector k is real and reads
k = ±k̂ ∈ R, (3.9)

with the propagation coefficient

k̂ =
1

P0

√

(E − E0)
2 − 1

4
E2

g > 0.

Thus, under the energy assumption (3.8), we obtain two traveling envelope waves, one being a
right-traveling envelope wave (if k = k̂) and the other being a left-traveling envelope wave (if
k = −k̂).



3.1. The Exterior Problem and the Dispersion Relation 45

On the other hand, if

|E − E0| ≤
1

2
Eg, (3.10)

the wave vector is purely imaginary and takes the form

k = ±iǩ ∈ iR, (3.11)

with the attenuation coefficient

ǩ =
1

P0

√

1

4
E2

g − (E − E0)
2 ≥ 0.

Hence, under the assumption (3.10) we obtain two evanescent envelope waves, one decaying for
x→ −∞ (if k = −iǩ, i.e. κ = ǩ) and the other decaying for x→ ∞ (if k = iǩ, i.e. κ = −ǩ). In
the case of identity in Eq. (3.10) we obtain a constant solution.

Eqs. (3.9) and (3.11) are called the dispersion relations of the Kane-model. Let us state the
reciprocal form of these relations. Therefore, we evaluate the energy eigenvalue of Ĥ. It yields

E = Ee/h(k) = E0 ±
√

1

4
E2

g + k2P 2
0 . (3.12)

The energy Ee associated with the positive sign in Eq. (3.12) denotes the energy of the electrons,
while Eh associated with the negative sign in Eq. (3.12) denotes the energy of the holes. Clearly,
Ee/h(k) satisfies the energy condition (3.8) if and only if the wave vector k is real. In this case,
i.e. in the case of traveling envelope waves, we will refer to the energy Ee as the energy of the
conduction band and the energy Eh as the energy of the valence band.

In order to complete the analysis of the exterior problem we will give the results of the
amplitude F̂(k). Note that in Chap. 2 we did not have to specify the amplitude since it was a
scalar and we were free to set it to 1. In the two-band Kane-model, however, the amplitude

F̂(k) = F̂e/h(k) =

(

F̂
e/h
c (k)

F̂
e/h
v (k)

)

,

is an eigenvector of Ĥ(k) with the corresponding energy eigenvalue Ee/h(k), see Eq. (3.6).
Clearly, the amplitude F̂e/h(k), as an eigenvector of Ĥ(k), is not defined uniquely. But we know
that it solves the under-determined linear equation

(

Ĥ11(k) − Ee/h(k)
)

F̂ e/h
c (k) + Ĥ12(k)F̂

e/h
v (k) = 0. (3.13)

This gives

F̂e/h(k) = c

(
Ĥ12(k)

Ee/h(k) − Ĥ11(k)

)

= c

(
kP0

Ee/h(k) − 1
2Eg − E0

)

, (3.14)

with some arbitrary constant c ∈ C. Note that Fe(x, k) = F̂e(k)e±ikx is the energy eigenstate
associated with the energy Ee of the electrons, while Fh(x, k) = F̂h(k)e±ikx corresponds to the
energy Eh of the holes, see Eq. (3.12).

If the energy condition |E − E0| > 1
2Eg is fulfilled we obtain traveling envelope waves with

a real wave vector k = ±k̂. For those traveling envelope waves we shall additionally assume
that they are unitary waves, i.e. the amplitude F̂e/h(k̂) is of norm 1 and hence, it satisfies the
normalization condition ∥

∥
∥F̂e/h(k̂)

∥
∥
∥

2

C

=
〈

F̂e/h(k̂), F̂e/h(k̂)
〉

= 1. (3.15)

In this case Ĥ(k̂) and its eigenvalues Ee/h(k̂) are real-valued and thus, the eigenvectors F̂e/h(k̂)
are either also real-valued or purely imaginary. But since our approach in Eq. (3.5) implies that
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F̂e/h(k̂) is the modulus of F, we shall assume that the amplitude F̂e/h(k̂) is real. Hence, the
normalization condition (3.15) becomes

F̂ e/h
c (k̂)2 + F̂ e/h

v (k̂)2 = 1. (3.16)

Thus, the amplitude F̂e/h(k) of a traveling envelope wave with norm 1 takes the form

F̂e/h(k̂) = ±







Ĥ12(k̂)
√

(Ee/h(k̂)−Ĥ11(k̂))
2
+Ĥ12(k̂)2

Ee/h(k̂)−Ĥ11(k̂)
√

(Ee/h(k̂)−Ĥ11(k̂))
2
+Ĥ12(k̂)2







= ±







k̂P0√

(Ee/h(k̂)− 1
2
Eg−E0)

2
+k̂2P 2

0

Ee/h(k̂)− 1
2
Eg−E0

√

(Ee/h(k̂)− 1
2
Eg−E0)

2
+k̂2P 2

0






.

(3.17)

Since the two solutions of the amplitude are linearly dependent, we can neglect the solution
with negative sign and set

F̂e/h(k̂) =







k̂P0√

(Ee/h(k̂)− 1
2
Eg−E0)

2
+k̂2P 2

0

Ee/h(k̂)− 1
2
Eg−E0

√

(Ee/h(k̂)− 1
2
Eg−E0)

2
+k̂2P 2

0






. (3.18)

In the remainder of this section we will prove

Proposition 3.1. Let k ∈ R be the wave vector of a traveling envelope wave. Then the two
vectors Fe(x, k) and Fh(x, k) of the envelope functions of the free scattering state are orthogonal,
i.e. 〈

Fe(x, k),Fh(x, k)
〉

= 0.

Proof. The scalar product of Fe(x, k) and Fh(x, k) is given by
〈

Fe(x, k),Fh(x, k)
〉

=
〈

F̂e(k)eikx, F̂h(k)eikx
〉

= e2ikx
〈

F̂e(k), F̂h(k)
〉

.

Hence, we only have to show that the amplitudes F̂e(k) and F̂h(k) are orthogonal. Taking
Eq. (3.18) into account, the scalar product of F̂e(k) and F̂h(k) becomes

〈

F̂e(k), F̂h(k)
〉

=
Ĥ12(k)

√
(

Ee(k) − Ĥ11(k)
)2

+ Ĥ12(k)2

Ĥ12(k)
√
(

Eh(k) − Ĥ11(k)
)2

+ Ĥ12(k)2

+
Ee(k) − Ĥ11(k)

√
(

Ee(k) − Ĥ11(k)
)2

+ Ĥ12(k)2

Eh(k) − Ĥ11(k)
√
(

Eh(k) − Ĥ11(k)
)2

+ Ĥ12(k)2
.

Considering the dispersion relation (3.12) we get

〈

F̂e(k), F̂h(k)
〉

=
Ĥ12(k)

2 +
(

E0 − Ĥ11(k) +
√

1
4E

2
g + P 2

0 k
2
)(

E0 − Ĥ11(k) −
√

1
4E

2
g + P 2

0 k
2
)

√
(

Ee(k) − Ĥ11(k)
)2

+ Ĥ12(k)2

√
(

Eh(k) − Ĥ11(k)
)2

+ Ĥ12(k)2
,

which gives

〈

F̂e(k), F̂h(k)
〉

=

(

Ĥ11(k) − E0

)2
+ Ĥ12(k)

2 − 1
4E

2
g − P 2

0 k
2

√
(

Ee(k) − Ĥ11(k)
)2

+ Ĥ12(k)2

√
(

Eh(k) − Ĥ11(k)
)2

+ Ĥ12(k)2
.
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By using the identities
(

Ĥ11(k) − E0

)2
=

1

4
E2

g

and

Ĥ12(k)
2 = P 2

0 k
2,

we obtain
〈

F̂e(k), F̂h(k)
〉

= 0,

and hence, the two vectors Fe(x, k) and Fh(x, k) of the envelope functions are orthogonal.

3.2 Transparent Boundary Conditions

The TBCs are derived in the same way as in Chap. 2. Let k̂0 denote the propagation coefficient
of the wave vector of a right-traveling envelope wave in the left exterior domain x ≤ 0 and k̂L

the corresponding propagation coefficient in the right exterior domain x ≥ L. We consider an
incoming envelope wave

Fin = F̂
e/h
0 (k̂0)e

k̂0x, x < 0. (3.19)

This incoming envelope wave is partly reflected at the left boundary at x = 0,

Fr = re−ik̂0x, x < 0, (3.20)

with the reflection coefficient vector r = rF̂
e/h
0 (−k̂0), r ∈ C, and partly transmitted at the right

boundary at x = L,

Ft = teik̂Lx, x > L, (3.21)

with the transmission coefficient vector t = tF̂
e/h
L (k̂L), t ∈ C. Hence, the solution in the left

exterior domain reads

F = Fin + Fr, x < 0, (3.22)

while the solution in the right exterior domain is given by

F = Ft, x > L. (3.23)

Note that Fin and Ft are right-traveling envelope waves, whereas Fr is a left-traveling envelope
wave.

Let us recall that the envelope wave and its first derivative are continuous at the two bound-
aries. We eliminate the reflection coefficient vector r by comparing Eq. (3.22) and its first
derivative at x = 0. It yields

d

dx
F(0, k̂0) + ik̂0F(0, k̂0) = 2ik̂0F̂

e/h
0 , (3.24a)

cf. the left TBC (2.17b) of the scalar Schrödinger equation. Analogously, we can eliminate the
transmission coefficient vector t when comparing Eq. (3.23) and its first derivative at x = L.
We get

d

dx
F(L, k̂L) − ik̂LF(L, k̂L) = 0, (3.24b)

compared to the right TBC (2.17c) of the scalar Schrödinger equation in the previous chapter.
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3.3 Reduction to a Second Order Scalar ODE

If we do not assume P0, E0 and Eg to be constant, the matrix A in the ODE (3.4) is not
constant in x and takes the form

A(x) =

(

0 i 1
P0(x)

(
E −

(
−1

2Eg(x) + E0(x)
))

i 1
P0(x)

(
E −

(
1
2Eg(x) + E0(x)

))
0

)

.

We can derive a second order scalar ODE for the conduction band and the valence band respec-
tively, that is equivalent to the Kane-model (3.1). We get

d2

dx2
Fc = i

1

P0(x)

(

E −
(

−1

2
Eg(x) + E0(x)

))
d

dx
Fv

= i
1

P0(x)

(

E −
(

−1

2
Eg(x) + E0(x)

))

i
1

P0(x)

(

E −
(

1

2
Eg(x) + E0(x)

))

Fc

= − 1

P 2
0 (x)

((

E −
(

−1

2
Eg(x) + E0(x)

))(

E −
(

1

2
Eg(x) + E0(x)

)))

Fc

= − 1

P 2
0 (x)

(

(E − E0(x))
2 − 1

4
E2

g(x)

)

Fc.

(3.25)

Together with definition of the Kane-parameter P0 in Eq. (3.3), Eq. (3.25) yields

− ~
2

2m∗
d2

dx2
Fc =

1

Ep(x)

(

(E − E0(x))
2 − 1

4
E2

g(x)

)

Fc, (3.26)

which is a non-linear eigenvalue problem in E.
The components of the vectorial TBCs (3.24) are not coupled, thus

d

dx
Fc(0, k̂0) + ik̂0Fc(0, k̂0) = 2ik̂0F̂

e/h
0,c , (3.27a)

and
d

dx
Fc(L, k̂L) − ik̂LFc(L, k̂L) = 0, (3.27b)

are the corresponding scalar TBCs of the scalar ODE (3.26). Together they form a scalar
BVP that differs from the BVP (2.17) of the scalar Schrödinger equation in Sec. 2 only in the
potential and energy. Therefore, we can prove

Theorem 3.2. Let Ep, Eg and E0 be in L∞(0, L) and real valued. Then the BVP of the
ODE (3.26) and the TBCs (3.27) has a unique solution Fc ∈W 2,∞(0, L).

Proof. This theorem is a corollary of Thm. 2.1. If we set

Escalar = 0,

and

V (x) = − 1

Ep(x)

(

(E − E0(x))
2 − 1

4
E2

g(x)

)

,

which is in L∞(0, L) since Ep, Eg and E0 are in L∞(0, L), we can apply Thm. 2.1 and thus, the
uniqueness of the solution is shown.

Corollary 3.3. Let Ep, Eg and E0 be in L∞(0, L) and real valued. Then the BVP of the

systems of ODEs (3.1) and the vectorial TBCs (3.24) has a unique solution F ∈
(
W 2,∞(0, L)

)2
.

Proof. We already showed the uniqueness of Fc in Thm. 3.2. The uniqueness of Fv and hence,
F can be obtained by defining the scalar ODE for Fv and then applying a corresponding version
of Thm. 3.2.



3.4. Discretization 49

3.4 Discretization

We recall the uniform discretization xj = jh, j = 0, . . . , J , with L = Jh, of the computational
interval (0, L) with P0,j = P0(xj), Eg,j = Eg(xj), E0,j = E0(xj) and the approximation Fj ≈
F(xj), j = 0, . . . , J .

In general, the discretization of the Kane-Model takes the form

M+
j Fj+1 +

(
M0

j − E1
)
Fj + M−

j Fj−1 = 0, j = 1, . . . , J − 1, (3.28)

where the matrices M+
j , M0

j and M−
j depend on the choice of the difference scheme.

In this section we will state different FDSs including their respective coefficient matrices
M+

j , M0
j and M−

j . We will analyze the discrete exterior problem of the introduced FDSs, i.e.
the free scattering state with constant Kane-parameter P0, constant band gap Eg and constant
middle of the band gap E0. However, we will not explicitly derive the discrete solutions of
the exterior domains x ≤ 0 and x ≥ L. Instead we will give results for some constant Kane-
parameter P0, some constant band gap Eg and some constant middle of the band gap E0. In
order to determine the discrete solutions of the exterior domains one shall apply the respective
values of the Kane-parameter P0, the band gap Eg and the middle of the band gap E0 to the
results that we will state.

If P0, Eg and E0 are constant then the coefficient matrices M+
j , M0

j and M−
j are constant.

In this case we will omit the subscript j.
Before we introduce a first FDS we prove

Proposition 3.4. Let α ∈ C be an eigenvalue of A ∈ C
n×n with corresponding eigenvector

a ∈ C
n. Then the first order difference equation with constant coefficients

yj = Ayj−1

with the initial value y0 = a has a solution of the form

yj = αja, j ≥ 0.

Proof. By assumption the proposition holds for j = 0. Then it also holds for any j ≥ 1 since

yj+1 = Ayj = Aαja = αjAa = αjαa = αj+1a.

Therefore,
yj = αja, j ≥ 0,

is a solution of the above difference equation.

Remark 3.5. The premise y0 = a in Prop. 3.4 sets the initial value of the first order finite
difference equation yj = Ayj−1 to some eigenvector a of the matrix A. However, if the n
eigenvectors of the matrix A are linearly independent, the premise y0 = a means no loss of
generality, since any vector v ∈ C

n can be expressed as a linear combination of the n eigenvectors
of A. Hence, at j = 0 any vector v ∈ C

n can be expressed as a linear combination of the n
solutions yj .

The matrices A we will consider in this chapter as well as in the following chapter have
mutually distinct eigenvalues and hence, the corresponding eigenvectors of A are linearly inde-
pendent. On the other hand, in Chap. 5 where we will analyze the general d-band k·p-model the
eigenvalues are not necessarily distinct and thus, further analysis of the eigenspace is required.

If P0, Eg and E0 are constant then Eq. (3.28) is a difference equation with constant coef-
ficients, but it is of second order. By using the first order difference operator Dfwd

h and Dbwd
h ,

respectively, the matrix M− or M+ vanishes and hence, we obtain a first order difference
equation with constant coefficients we can apply Prop. 3.4 to.
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3.4.1 One-Sided Finite Difference Schemes

Let us start with the first order forward FDS. We apply the first order forward difference
operator Dfwd

h to the Kane-model (3.1). This gives the coefficient matrices

M+,fwd
j =

(
0 −iP0,j

1
h

−iP0,j
1
h 0

)

,

M0,fwd
j =

(
1
2Eg,j + E0,j iP0,j

1
h

iP0,j
1
h −1

2Eg,j + E0,j

)

,

M−,fwd
j = 0.

(3.29)

With these matrices and by assuming that the band gap Eg and the middle of the band gap E0

are constant, Eq. (3.28) can be written in the form

Fj+1 = AfwdFj , j = 0, . . . , J − 1, (3.30)

with

Afwd = −
(

M+,fwd
)−1 (

M0,fwd − E1

)

=

(

1 −i h
P0

(
(E0 − E) − 1

2Eg

)

−i h
P0

(
(E0 − E) + 1

2Eg

)
1

)

.

According to Prop. 3.4, the solution of this first order difference equation is

Fj = F̂hα
j ,

where α ∈ C denotes an eigenvalue of Afwd and F̂h ∈ C
2 the corresponding eigenvector. Note

that we can write the discrete solution Fj in the form

Fj = F̂he
ikhjh, (3.31)

with the discrete amplitude F̂h and the discrete wave vector

kh = k̂h + iǩh =
1

h
(arg(α) − i ln |α|) ,

where k̂h is called discrete propagation coefficient and ǩh is the discrete attenuation coefficient.
If the discrete attenuation coefficient ǩh is zero the discrete envelope wave Fj is said to be
traveling while it is called evanescent otherwise.

The eigenvalues α of Afwd are given by the relation

(α− 1)2 =
h2

P 2
0

(
1

4
E2

g − (E − E0)
2

)

. (3.32)

If we assume that the energy E satisfies the complement of the energy condition (3.8), i.e.

|E − E0| ≤
1

2
Eg,

the right hand side of Eq. (3.32) is nonnegative and hence, the roots α1,2 of Eq. (3.32) are real,
and if

h <
P0

√
1
4E

2
g − (E − E0)

2
,

the roots α1,2 are positive. This implies that the wave vectors are purely imaginary and the
discrete envelope waves are evanescent.
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On the other hand, if the energy condition (3.8) is satisfied, i.e.

|E − E0| >
1

2
Eg,

then the roots α1,2 of Eq. (3.32) are complex and read

α1,2 = 1 ± i
h

P0

√

(E − E0)
2 − 1

4
E2

g .

Since the modulus of the complex eigenvalues α1,2 is greater than 1, the discrete wave vector kh

has a nonzero discrete attenuation coefficient ǩh and hence, yields evanescent envelope waves.

However, we require traveling envelope waves to model the continuous case. But both pairs
of eigenvalues result in evanescent envelope waves and thus, the first order forward FDS is not
applicable to the Kane-model (3.1).

The first order backward FDS with the coefficient matrices

M+,bwd
j = 0,

M0,bwd
j =

(
1
2Eg,j + E0,j −iP0,j

1
h

−iP0,j
1
h −1

2Eg,j + E0,j

)

,

M−,bwd
j =

(
0 iP0,j

1
h

iP0,j
1
h 0

)

,

(3.33)

gives similar results. In this case the eigenvalues α of the matrix

Abwd = −
(

M0,bwd − E1

)−1
M−,bwd

=
P0

P 2
0 + h2

(

(E − E0)
2 − 1

4E
2
g

)

(
P0 −ih

(
(E0 − E) − 1

2Eg

)

−ih
(
(E0 − E) + 1

2Eg

)
P0

)

of the discrete exterior problem read

α1,2 =
P0

P 2
0 + h2

(

(E − E0)
2 − 1

4E
2
g

)

(

P0 ± h

√

1

4
E2

g − (E − E0)
2

)

,

if the energy E satisfies

|E − E0| ≤
1

2
Eg,

and

α1,2 =
P0

P 2
0 + h2

(

(E − E0)
2 − 1

4E
2
g

)

(

P0 ± ih

√

(E − E0)
2 − 1

4
E2

g

)

,

if the energy E satisfies

|E − E0| >
1

2
Eg.

Both cases do not yield a pair of real discrete wave vectors and hence, the first order backward
FDS is not applicable either.
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3.4.2 The Centered Finite Difference Scheme

If we apply the second order centered difference operator Dcen
h to the Kane-model (3.1) the

coefficient matrices become

M+,cen
j =

(
0 −iP0,j

1
2h

−iP0,j
1
2h 0

)

,

M0,cen
j =

(
1
2Eg,j + E0,j 0

0 −1
2Eg,j + E0,j

)

,

M−,cen
j =

(
0 iP0,j

1
2h

iP0,j
1
2h 0

)

.

(3.34)

Since neither M+,cen
j nor M−,cen

j vanishes, the difference equation (3.28) is of second order.
However, every second order difference equation can be reduced to first order by introducing
the substitution

Φj =

(
Fj

Fj+1

)

. (3.35)

In the case of a constant Kane-parameter P0, a constant band gap Eg as well as a constant
middle of the band gap E0 and with the help of the substitution (3.35) we get the first order
difference equation with constant coefficients

Φj = AcenΦj−1, (3.36)

with

Acen =

(
0 1

(M+,cen)−1M−,cen (M+,cen)−1
(
M0,cen − E1

)

)

=







0 0 1 0
0 0 0 1

1 0 0 −2i h
P0

(
E0 − E − 1

2Eg

)

0 1 −2i h
P0

(
E0 − E + 1

2Eg

)
0






.

The solution of the first order difference equation is

Φj = aαj ,

where α ∈ C denotes an eigenvalue of Acen and a ∈ C
4 the corresponding eigenvector, cf.

Prop. 3.4. Note that the discrete solution Fj ∈ C
2 of the second order centered FDS is given by

the first two components of Φj ∈ C
4. Therefore, we introduce the discrete amplitude F̂h ∈ C

2

that contains the first two components of a. Then the discrete solution Fj takes the form

Fj = F̂hα
j = F̂he

ikhjh, (3.37)

with the discrete wave vector

kh = k̂h + iǩh =
1

h
(arg(α) − i ln |α|) .

Again we shall refer to k̂h as discrete propagation coefficient and ǩh as discrete attenuation

coefficient.

The form of the discrete solution (3.37) implies

Fj+1e
−ikhh = Fj = Fj−1e

ikhh,
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and thus, the difference equation (3.28) reduces to

Ĥcen
h F̂h = EF̂h, (3.38)

with

Ĥcen
h = Ĥcen

h (kh)

= M+,ceneikhh + M0,cen + M−,cene−ikhh

=

(
1
2Eg + E0 −i 1

2hP0

(
eikhh − e−ikhh

)

−i 1
2hP0

(
eikhh − e−ikhh

)
−1

2Eg + E0

)

=

(
1
2Eg + E0

1
hP0 sin khh

1
hP0 sin khh −1

2Eg + E0

)

.

The characteristic polynomial of Ĥcen
h gives

(E − E0)
2 − 1

4
E2

g − P 2
0

sin2 khh

h2
= 0,

which implies that the discrete wave vector kh satisfies

sin2 khh =
h2

P 2
0

(

(E − E0)
2 − 1

4
E2

g

)

. (3.39)

Let us assume that energy condition (3.8) is fulfilled, i.e.

|E − E0| >
1

2
Eg,

then the discrete wave vector is given by the relation

sin khh = ± h

P0

√

(E − E0)
2 − 1

4
E2

g .

Since

sin (−khh) = − sin (khh) ,

the wave vector reads

kh = ±k̂h ∈ R, (3.40)

with

k̂h =
1

h
arcsin

(

h

P0

√

(E − E0)
2 − 1

4
E2

g

)

+ n
2π

h
, n ∈ Z.

However, by applying l’Hôpital’s rule it is easy to show that the discrete wave vector kh = ±k̂h

only tends to the analytical wave vector k = ±ik̂ of the continuous problem if n = 0, whereas
for n 6= 0 the limit of kh = ±k̂h for h → 0 does not exist. Thus, we shall neglect solutions of
the discrete wave vector with n 6= 0 and set

k̂h =
1

h
arcsin

(

h

P0

√

(E − E0)
2 − 1

4
E2

g

)

. (3.41)

On the other hand, if the complement of the energy condition (3.8) is fulfilled, i.e.

|E − E0| ≤
1

2
Eg,
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the discrete wave vector kh satisfies

sin khh = ±i
h

P0

√

1

4
E2

g − (E − E0)
2.

By using the identity sin khh = −i sinh ikhh, we get

sinh ikhh = ± h

P0

√

1

4
E2

g − (E − E0)
2.

Considering that sinh (−ikhh) = − sinh (ikhh) and arsinh(x) = ln
(

x+
√
x2 + 1

)

for x ∈ R, the

discrete wave vector is purely imaginary and reads

kh = ±iǩh, (3.42)

with the discrete attenuation coefficient

ǩ =
1

h
ln
(

z +
√

z2 + 1
)

,

and

z =
h

P0

√

1

4
E2

g − (E − E0)
2 ∈ R.

Hence, under the assumption (3.10) we obtain two evanescent envelope waves, one decaying
for x→ −∞ and the other one decaying for x→ ∞.

Eqs. (3.40) and (3.42) form the so-called discrete dispersion relations of the second order
centered FDS. From the characteristic polynomial of Ĥcen

h we can derive the reciprocal form

E = E
e/h
h (k) = E0 ±

√

1

4
E2

g + P 2
0

sin2 khh

h2
. (3.43)

Analogously to the continuous case, the energy Ee
h associated with the positive sign in Eq. (3.43)

denotes the energy of the electrons, while Eh
h corresponding to the negative sign in Eq. (3.43)

describes the energy of the holes. Clearly, E
e/h
h (kh) satisfies the energy condition (3.8) if and

only if the discrete wave vector kh is real. In this case, i.e. in the case of discrete traveling
envelope waves, we will refer to the energy Ee

h as the energy of the conduction band and the
energy Eh

h as the energy of the valence band.

In order to finish the analysis of the discrete exterior problem we will now specify the discrete
amplitude F̂h(kh). We know that the amplitude

F̂h(kh) = F̂
e/h
h (kh) =

(

F̂
e/h
h,c (kh)

F̂
e/h
h,v (kh)

)

,

is an eigenvector of Ĥcen
h (kh) with the corresponding energy eigenvalue E

e/h
h (kh). Hence, the

discrete amplitude is not defined uniquely and solves the under-determined linear equation

(

Ĥcen
h,11(kh) − E

e/h
h (kh)

)

F̂
e/h
h,c (kh) + Ĥcen

h,12(kh)F̂
e/h
h,v (kh) = 0. (3.44)

Thus, the discrete amplitude reads

F̂
e/h
h (kh) = c

(

Ĥcen
h,12(kh)

E
e/h
h (kh) − Ĥcen

h,11(kh)

)

= c

(

P0
sin khh

h

E
e/h
h (kh) − 1

2Eg − E0

)

, (3.45)
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with some arbitrary c ∈ C. Note that Fe
j(kh) = F̂e

h(kh)e±ikhjh describes the energy eigenstate

associated with the energy Ee
h of the electrons while Fh

j (kh) = F̂h
h(kh)e±ikhjh corresponds to the

energy Eh
h of the holes, see Eq. (3.43).

If |E − E0| > 1
2Eg is fulfilled the resulting discrete wave vectors are real, yielding discrete

traveling envelope waves. In this case we shall additionally assume that the discrete waves are

unitary, i.e. the discrete amplitude F̂
e/h
h (k̂h) has norm 1. Then it also satisfies the normalization

condition ∥
∥
∥F̂e/h(k̂h)

∥
∥
∥

2

C

=
〈

F̂e/h(k̂h), F̂e/h(k̂h)
〉

= 1. (3.46)

Since Ĥcen
h (k̂h) and its eigenvalues E

e/h
h (k̂h) are real-valued the eigenvectors F̂

e/h
h (k̂h) are either

also real-valued or purely imaginary. But since our approach in Eq. (3.37) implies that F̂
e/h
h (k̂h)

is the modulus of Fj , we shall assume that the discrete amplitude F̂
e/h
h (k̂h) is real. Hence, the

normalization condition (3.46) becomes

F̂
e/h
h,c (k̂h)2 + F̂

e/h
h,v (k̂h)2 = 1. (3.47)

Thus, the amplitude F̂
e/h
h (k̂h) of the discrete traveling envelope wave with norm 1 reads

F̂
e/h
h (k̂h) = ±









Ĥcen
h,12(k̂h)

√
(

E
e/h
h

(k̂h)−Ĥcen
h,11(k̂h)

)2
+Ĥcen

h,12(k̂h)2

E
e/h
h

(k̂h)−Ĥcen
h,11(k̂h)

√
(

E
e/h
h

(k̂h)−Ĥcen
h,11(k̂h)

)2
+Ĥcen

h,12(k̂h)2









= ±









P0
sin k̂hh

h√
(

E
e/h
h

(k̂h)− 1
2
Eg−E0

)2
+P 2

0
sin2 k̂hh

h2

E
e/h
h

(k̂h)− 1
2
Eg−E0

√
(

E
e/h
h

(k̂h)− 1
2
Eg−E0

)2
+P 2

0
sin2 k̂hh

h2









.

(3.48)

Since the two solutions in Eq. (3.48) of the amplitude are linearly dependent, we can neglect
the solution with negative sign and set

F̂
e/h
h (k̂h) =









P0
sin k̂hh

h√
(

E
e/h
h

(k̂h)− 1
2
Eg−E0

)2
+P 2

0
sin2 k̂hh

h2

E
e/h
h

(k̂h)− 1
2
Eg−E0

√
(

E
e/h
h

(k̂h)− 1
2
Eg−E0

)2
+P 2

0
sin2 k̂hh

h2









. (3.49)

In the remainder of this section, let us analyze the periodicity of the discrete dispersion
relation of the centered FDS and compare it with the periodicity of the discrete envelope func-
tion. Let us focus on traveling envelope waves with a real wave vector kh ∈ R. The discrete
amplitude satisfies

F̂
e/h
h

(

kh + n
2π

h

)

= F̂
e/h
h (kh), ∀n ∈ Z, kh ∈ R, (3.50)

and hence, it has a period of 2π
h in kh. Thus, the discrete envelope function

Fj = F̂
e/h
h (kh)eikhjh

is 2π
h -periodic in kh. On the other hand, the discrete dispersion relation of the centered FDS

satisfies
E

e/h
h

(

kh + n
π

h

)

= E
e/h
h (kh), ∀n ∈ Z, kh ∈ R, (3.51)
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i.e. the discrete dispersion relation is π
h -periodic in kh. Fig. 3.1 in the following section demon-

strates this behavior. It shows a comparison of the discrete dispersion relation of the centered
FDS with the analytical dispersion relation and the discrete dispersion relation of the sym-
metrized FDS we will introduce in the following section.

Since the discrete envelope function is 2π
h -periodic we shall focus on the interval

(
−π

h ,
π
h

)
.

Recall that solutions with kh < 0 are left-traveling, while solutions with kh > 0 are right-
traveling. Both the discrete envelope function as well as the discrete dispersion relation of
the centered FDS are even functions and hence, without loss of generality we shall restrict our
considerations to the interval

(
0, π

h

)
of right-traveling solutions. But since the discrete dispersion

relation is π
h -periodic with a maximum at kh = π

2h it is not injective in this domain. Without
loss of generality, let us focus on the electron energy E = Ee. Thus, for any energy E with

E0 +
1

2
Eg = Ee

h(0) = min
kh∈R

Ee
h(kh) < E < max

kh∈R

Ee
h(kh) = Ee

h

( π

2h

)

,

there are exactly two discrete wave vectors kh in the interval
(
0, π

h

)
that solve the discrete

dispersion relation. These discrete wave vectors are given by

kh,1 =
1

h
arcsin

(

h

P0

√

(E − E0)
2 − 1

4
E2

g

)

,

see Eq. (3.40), and

kh,2 =
π

h
− kh,1.

This implies that for any admissible energy E there exist two solutions of the discrete
envelope function

Fj = F̂
e/h
h (kh,1)e

ikh,1jh (3.52a)

and
Fj = F̂

e/h
h (kh,2)e

ikh,2jh = F̂
e/h
h

(π

h
− kh,1

)

ei(
π
h
−kh,1)jh. (3.52b)

However, only the first solution (3.52a) is an appropriate estimate of the analytical solution
since the wave vector kh,2 = π

h − kh,1 does not tend to the analytical wave k for h → 0 while
the wave vector kh,1 does, as described above.

Note that the same is true for left-traveling solutions in the interval
(
−π

h , 0
)

and hence,
for any admissible energy E there are exactly two positive and two negative wave vectors kh

in the domain
(
−π

h ,
π
h

)
that solve the discrete dispersion relation. All other solutions of the

discrete wave vector that are not in the domain
(
−π

h ,
π
h

)
can be ascribed to the four solutions

in
(
−π

h ,
π
h

)
.

What does this mean for the numerical result of a certain problem? We know that the
discrete solution of the centered FDS within a domain of a constant Kane-parameter P0, a
constant band gap Eg and a constant middle of the band gap E0 is

Fj = F̂
e/h
h (kh)eikhjh,

with some discrete wave vector kh that satisfies the discrete dispersion relation (3.43) and a

discrete amplitude F̂
e/h
h (kh) of the form as given in Eq. (3.48). Hence, if we apply the centered

FDS to an example where these parameters are constant we do not expect solutions of the
incorrect form (3.52b) since the DTBCs we will derive later define the discrete wave vector
in the inner part of the semiconductor. For simplicity let us denote the correct discrete wave
vector kh,1 by kh. When using this discrete wave vector instead of π

h − kh to form the DTBCs,
the discrete solution of a problem with constant parameters P0, Eg and E0 is in fact

Fj = F̂
e/h
h (kh)eikhjh,
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which tends to the analytical solution for h → 0. However, if we allow the parameters to vary
along the computational interval we expect some complications. For example, let us consider
a semiconductor heterostructure with a single barrier potential, where the Kane-parameter P0

and the band gap Eg are constant whereas the middle of the band gap E0 is piecewise constant.
Then we know that the solution in each of the three subdomains takes the form

Fj = F̂
e/h
h (kh)eikhjh,

where the discrete wave vector kh and the discrete amplitude F̂
e/h
h (kh) are constant within

each subdomain but differ between these subdomains. Now let us consider an incoming wave,
entering the semiconductor at x = 0. This envelope wave is reflected at the barrier. While
the DTBCs define the discrete wave vector of the incoming envelope wave, the discrete wave
vector of the reflected envelope wave is not defined uniquely. Instead the numerical solver gives
a solution inside the left subdomain that reads

Fj = F̂
e/h
h (kh)eikhjh + r1F̂

e/h
h (−kh)e−ikhjh + r2F̂

e/h
h (

π

h
− kh)e−i(π

h
−kh)jh,

with some reflection coefficients r1 and r2. The correct discrete solution does not comprise
terms with the incorrect wave vector π

h − kh, i.e. r2 = 0. In general, the numerical solver does
not set r2 = 0, and hence the numerical solution comprises terms with the incorrect wave vector
π
h −kh that we will refer to as spurious oscillations. The same is true for the second subdomain,
while the solution in the right subdomain is defined uniquely by the right DTBC since we do
not expect a reflection at the boundary at x = L. However, the amplitude of the solution in
the right subdomain, that is equal to the transmission coefficient, might differ significantly from
the analytical solution since the sum of the squared norms of all resulting transmission and
reflection coefficients including those yielding the spurious oscillations is equal to the squared
norm of the incoming envelope function. This means that if the reflection coefficients yielding
the spurious oscillations are nonzero the discrete transmission coefficient differs significantly
from the analytical transmission coefficient.

Before we will test this behavior of the centered FDS we will introduce an alternative FDS
in the following section that prevents the problem of the periodicity of the discrete dispersion
relation.

3.4.3 The Symmetrized Finite Difference Scheme

Let us introduce a combined backward and forward FDS, that we will refer to as symmetrized

FDS. It is an approach to find a discrete dispersion relation and a discrete solution with the
same periodicity. We apply the left-sided operator Dbwd

h to the coupling in the first column
of the Hamiltonian H whereas we apply the right-sided operator Dfwd

h to the coupling in the
second column of H. This gives the coefficient matrices

M+,sym
j =

(
0 −iP0,j

1
h

0 0

)

,

M0,sym
j =

(
1
2Eg,j + E0,j iP0,j

1
h

−iP0,j
1
h −1

2Eg,j + E0,j

)

,

M−,sym
j =

(
0 0

iP0,j
1
h 0

)

.

(3.53)

However, M+,sym is not regular and hence, we cannot transform the second order difference
equation into a difference equation of order one. In order to perform this transformation a
regularization term is needed. This regularization term leads us to the next step of generalization
of the multi-band effective mass approximations and is discussed later in Chap. 4.
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Nevertheless, we shall assume that the discrete solution takes the form

Fj = F̂he
ikhjh, (3.54)

with the discrete wave vector

kh = k̂h + iǩ ∈ C,

and the discrete amplitude F̂h ∈ C
2. Note that in contrast to the centered FDS, this approach

is mathematically not evident.
The form of the discrete solution (3.54) implies

Fj+1e
−ikhh = Fj = Fj−1e

ikhh,

and thus, applied to the difference equation (3.28) it yields

Ĥsym
h F̂h = EF̂h, (3.55)

with

Ĥsym
h = Ĥsym

h (kh)

= M+,symeikhh + M0,sym + M−,syme−ikhh

=

(
1
2Eg + E0 −i 1

hP0

(
eikhh − 1

)

−i 1
hP0

(
1 − e−ikhh

)
−1

2Eg + E0

)

=

(
1
2Eg + E0

1
hP0 (− sin khh− i (1 − cos khh))

1
hP0 (− sin khh+ i (1 − cos khh)) −1

2Eg + E0

)

.

By analyzing the characteristic polynomial

0 = (E − E0)
2 − 1

4
E2

g − 1

h2
P 2

0

(

sin2 khh+ (1 − cos khh)
2
)

= (E − E0)
2 − 1

4
E2

g − 4

h2
P 2

0 sin2 khh

2
,

of Ĥsym
h which implies

sin2 khh

2
=

h2

4P 2
0

(

(E − E0)
2 − 1

4
E2

g

)

, (3.56)

and proceeding analogously to the derivation of the discrete wave vector kh of the centered
FDS, we end up with the following discrete wave vectors of the symmetrized FDS.

If the energy condition (3.8) is fulfilled, i.e.

|E − E0| >
1

2
Eg,

the discrete wave vector kh is real and reads

kh = ±k̂h ∈ R, (3.57)

with the propagation coefficient

k̂h =
2

h
arcsin

(

h

2P0

√

(E − E0)
2 − 1

4
E2

g

)

.

On the other hand, if the energy condition (3.8) is not fulfilled, i.e.

|E − E0| ≤
1

2
Eg,
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then the discrete wave vector kh is purely imaginary and takes the form

kh = ±iǩh, (3.58)

with the discrete attenuation coefficient

ǩ =
2

h
ln
(

z +
√

z2 + 1
)

,

where z ∈ R is given by

z =
h

2P0

√

1

4
E2

g − (E − E0)
2.

The reciprocal of the dispersion relations (3.57) and (3.58) can be derived directly from the
characteristic polynomial of Ĥsym

h . We get

E = E
e/h
h (k) = E0 ±

√

1

4
E2

g +
4

h2
P 2

0 sin2 khh

2
, (3.59)

where the positive sign corresponds to the energy Ee
h of the electrons while the negative sign is

associated with the energy Eh
h of the holes.

No we will specify the discrete amplitude F̂h(kh) of the symmetrized FDS. Analogously to
the centered FDS the discrete amplitude

F̂h(kh) = F̂
e/h
h (kh) =

(

F̂
e/h
h,c (kh)

F̂
e/h
h,v (kh)

)

,

is given by

F̂
e/h
h (kh) = c

(

Ĥsym
h,12(kh)

E
e/h
h (kh) − Ĥsym

h,11(kh)

)

= c

(
1
hP0 (sin khh+ i (1 − cos khh))

E
e/h
h (kh) − 1

2Eg − E0

)

, (3.60)

with some arbitrary c ∈ C. Note that Fe
j(kh) = F̂e

h(kh)e±ikhjh is the energy eigenstate associated

with the energy Ee
h of the electrons while Fh

j (kh) = F̂h
h(kh)e±ikhjh corresponds to the energy

Eh
h of the holes, see Eq. (3.59).

Let us additionally assume that the discrete waves are unitary, i.e. the discrete amplitude

F̂
e/h
h (k̂h) has norm 1. Then it also satisfies the normalization condition

∥
∥
∥F̂e/h(k̂h)

∥
∥
∥

2

C

=
〈

F̂e/h(k̂h), F̂e/h(k̂h)
〉

= 1,

and the constant c is determined by

c =

(

F̂
e/h
h,c (kh)F̂

e/h
h,c (kh) + F̂

e/h
h,v (kh)F̂

e/h
h,v (kh)

)−1/2

=

(

4

h2
P 2

0 sin2 khh

2
+

(

E
e/h
h (kh) − 1

2
Eg − E0

)2
)−1/2

.

The discrete amplitude of a traveling envelope wave of the symmetrized FDS is not real-
valued. While the valence band component is real, the conduction band component is complex
if h 6= n2π

kh
, n ∈ N. Thus, the resulting discrete wave is not plane since the two components have

a different phase. This indicates that the approach (3.54) we could not prove mathematically
leads to physically incorrect solutions. However, the numerical examples in the following sections
show that the symmetrized scheme gives reasonable results.
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Finally, we note that the periodicities of the discrete dispersion relation of the symmetrized
FDS and the discrete envelope function are in fact the same, which is not the case for the
centered FDS. Both, the discrete dispersion relation and the discrete envelope function of the
symmetrized FDS are 2π

h -periodic in kh, see Eqs. (3.59) and (3.60). However, it is important
to note that the discrete dispersion relation, which is again an even function, is injective in the
interval

(
0, π

h

)
. This means that for any admissible energy E there exists only one positive and

one negative discrete wave vector kh in
(
−π

h ,
π
h

)
, that solves the discrete dispersion relation of

the symmetrized FDS. Hence, we do not expect any spurious oscillations due to incorrect wave
vectors as we do for the centered FDS.

This behavior is illustrated in Fig. 3.1 that shows a comparison of the discrete dispersion
relation of the symmetrized FDS with the analytical dispersion relation and the discrete disper-
sion relation of the centered FDS for a step size h = 1/300, a Kane-parameter P0 ≡ 1, a band
gap Eg ≡ 200 and a middle of the band gap E0 ≡ 0.

3.5 Discrete Transparent Boundary Conditions

We derive the DTBCs for the Kane-model by applying the discrete solution with the discrete
amplitudes (3.49) and (3.60) as well as the discrete wave vectors (3.41) and (3.57) to the
reflection and transmission conditions (3.22) and (3.23). We assume that these conditions hold
in a small vicinity of the two boundaries, i.e. j = 0, 1 and j = J − 1, J respectively. Let k̂h,0

denote the propagation coefficient of the discrete wave vector and F̂h,0(k̂h,0) the corresponding
discrete amplitude of a traveling discrete envelope wave in the left exterior domain x ≤ 0.
On the other hand, let k̂h,L denote the propagation coefficient of the discrete wave vector and

F̂h,L(k̂h,L) the corresponding discrete amplitude of a traveling discrete envelope wave in the
right exterior domain x ≥ L. Thus, we have

Fj = Fin
j + Fr

j = F̂h,0e
ik̂h,0xj + re−ik̂h,0xj , j = 0, 1,

and
Fj = Ft

j = teik̂h,Lxj , j = J − 1, J,

with r = rF̂h,0(−k̂h,0), r ∈ C, and t = tF̂h,L(k̂h,L), t ∈ C. By eliminating the reflection and
transmission coefficients we obtain the DTBCs

−F0e
−ik̂h,0h + F1 = F̂h,02i sin k̂h,0h, (3.61a)

and
FJ−1e

ik̂h,Lh − FJ = 0, (3.61b)

compared to the scalar DTBCs in Eq. (2.29).

Remark 3.6. Note that the discrete formulation of the two-band Kane-model as given in
Eq. (3.28) together with the DTBCs (3.61) has a unique solution for all considered examples,
i.e. the band matrix consisting of the coefficients of Eq. (3.28) for j = 1, . . . , J − 1, and the two
DTBCs is regular. It remains to prove a general existence theorem for the discrete problem.
However, this proof is not a discrete analogon of Cor. 3.3 since we can not reduce the discrete
problem of the Kane-model to a problem that is equivalent to the scalar discrete problem.

3.6 Numerical Examples

3.6.1 The Free Scattering State

In a first numerical example we briefly analyze the numerical results of the centered FDS and
the symmetrized FDS in the case of the free scattering state. In particular we are interested if
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Figure 3.1: Comparison of the analytical dispersion relation (red) of the Kane-model and the
discrete dispersion relations of the centered FDS (green) and the symmetrized FDS (blue) for a
step size h = 1/300, a Kane-parameter P0 ≡ 1, a band gap Eg ≡ 200 and a middle of the band
gap E0 ≡ 0. The horizontal dashed lines indicate the level of the energy values E = Eg/2 and
E = −Eg/2. The negative wave vector axis corresponds to the purely imaginary wave vector
k = iǩ of evanescent envelope waves while the positive wave vector axis corresponds to the real
wave vector k = k̂ of traveling envelope waves. The vertical dashed line in (a) indicates the the
location of the wave vector value k = π/h.



62 3. The Two-Band Kane-Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−3

−2

−1

0

1

2

3

4

x

ph
as

e 
of

 th
e 

en
ve

lo
pe

 fu
nc

tio
n

analytical
solution

numerical solution
(centered FDS)

numerical solution
(symmetrized FDS)

Figure 3.2: Comparison of the phases of the analytical solution (red) and the numerical solutions
of the centered FDS (green) and the symmetrized FDS (blue) for the free scattering state with
P0 ≡ 1, Eg ≡ 20, E0 ≡ 0, a step size h = 1/100 and an energy E = 25.

the results of the centered FDS in fact do not oscillate in the free scattering state. Moreover,
we want to check if the symmetrized FDS delivers acceptable results although it does not give
plane waves in the discrete exterior problem.

We shall set P0 ≡ 1, E0(x) ≡ 20, Eg(x) ≡ 0 and E = 25.
The analytical solution of the free scattering state has norm 1. Both the centered FDS and

the symmetrized FDS using the corresponding DTBCs give results with norm 1 without any
oscillations. The phases of the analytical solution and the numerical solutions of the two FDSs
are plotted in Fig. 3.2 for a step size h = 1/100. While the phases of the numerical results of
both schemes almost coincide for the used level of detail in Fig. 3.2, the phases of the numerical
schemes differ slightly from the phase of analytical scheme. The numerical wave lengths are
smaller than the analytical wave length. This error is directly related to the difference of the
analytical wave vector and the discrete wave vectors. Thus, this error decreases for smaller step
sizes.

Analogously to the evaluation of the discrete L2-error in Chap. 2, we have to optimize the
L2-error with respect to a phase offset ϕ ∈ [−π, π]. In other words we have to solve the nonlinear
problem

∆Fmin
h = min

ϕ∈[−π,π]
∆Fh = min

ϕ∈[−π,π]

1

J + 1

√
√
√
√

J∑

j=0

‖F(xj) − Fjeiϕ‖2, (3.62)

where F(xj) denotes the analytical solution at x = xj and Fj the numerical solution using
the step size h = 1/J . As in Chap. 2, nonlinear optimization methods such as the MATLAB
procedure fminsearch do not give acceptable results. Hence, we discretize the domain [−π, π]
with a step size hϕ = 2π/1000 and analyze the L2-error ∆Fh at every grid point in order to
evaluate the minimal L2-error ∆Fmin

h .
The L2-errors of the numerical solutions are shown in Fig. 3.3. The numerical order evaluated

experimentally coincides for both FDSs with their formal order. While the discrete L2-error of
the centered FDS is in O(h2) the discrete L2-error of the symmetrized FDS decays like O(h).
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Figure 3.3: Discrete L2-errors of the numerical solution of the centered FDS (solid line) and
the symmetrized FDS (dashed line) against the number of grid points J = 1/h for the free
scattering state with P0 ≡ 1, Eg ≡ 20, E0 ≡ 0 and an energy E = 25.

We note that both the centered FDS and the symmetrized FDS give reasonable results.
Hence, the difference of the periodicity of the discrete dispersion relation of the centered FDS
and its discrete solution do not affect the results of the free scattering state. Similarly, the
non-plane discrete solution of the symmetrized FDS does not produce notable errors.

3.6.2 The Single Barrier Potential

Analogously to the numerical examples in Chap. 2 we want to compare the numerical results with
the analytical results when applied to a single barrier potential. We consider a semiconductor
of length L that is split into three parts. Let 0 < x1 < x2 < L, then the three subdomains of
the semiconductor are defined by [0, x1), [x1, x2) and [x2, L]. The two outer subdomains are
denoted by A = [0, x1) ∪ [x2, L], while the inner subdomain is called B = [x1, x2).

The Kane-parameter P0 and the band gap Eg are assumed to be constant, while the middle
of the band gap E0 is piecewise constant and satisfies

E0(x) = 0, x ∈ A,

and

E0(x) = E0,B, x ∈ B.

In other words, we add some potential E0,B to the band edges in the domain B. Note that we
can additionally define a piecewise constant band gap and proceed analogously. However, for
simplicity we shall restrict the variation to the middle of the band gap only.

First let us derive the analytical solution. We suppose that the energy E satisfies the energy
condition (3.8) in the whole semiconductor, i.e.

E > E0(x) +
1

2
Eg(x), x ∈ [0, L].
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In the three domains [0, x1), [x1, x2) and [x2, L] both the band gap Eg and the middle of the
band gap E0 are constant. Hence, in each domain the vector of the envelope functions takes
the form

F(x) = aF̂e/h(k̂)eik̂x + bF̂e/h(−k̂)e−ik̂x,

with a, b ∈ C and the propagation coefficient k̂ of the wave vector k. Let k̂A be the propagation
coefficient in A and let k̂B denote the propagation coefficient in B. Then we have

k̂A =
1

P0

√

E2 − 1

4
E2

g

and

k̂B =
1

P0

√

(E − E0,B)2 − 1

4
E2

g .

Let F̂
e/h
A (k) denote the unitary amplitude of a wave with wave vector k in the domain A

and let F̂
e/h
B (k) denote the corresponding, unitary amplitude in the domain B. We consider a

right-traveling envelope wave with amplitude F̂
e/h
A (k̂) that enters the semiconductor at x = 0.

Since Eg is constant and E0 ≡ 0 in A, which is also the case in the exterior domain x < 0, the
incoming wave is not reflected but completely transmitted into the domain [0, x1). At x = x1 the
envelope wave is partly reflected. In the domain [x2, L] we expect a transmitted, right-traveling
envelope wave that leaves the semiconductor at x = L. For the same reason as at x = 0 we do
not expect any reflection of the transmitted wave at x = L. Thus, the vector of the envelope
functions is determined by

F(x) =







F̂
e/h
A (k̂A)eik̂Ax + rF̂

e/h
A (−k̂A)e−ik̂Ax, if x ∈ [0, x1),

aF̂
e/h
B (k̂B)eik̂Bx + bF̂

e/h
B (−k̂B)e−ik̂Bx, if x ∈ [x1, x2),

tF̂
e/h
A (k̂A)eik̂Ax, if x ∈ [x2, L].

(3.63)

Since only the band edges vary between the three subdomains, the resulting vector of enve-
lope functions F is continuous, cf. [24]. In particular, F is continuous at x = x1, x2. Hence, we
get the following system of linear equations

F̂
e/h
A (k̂A)eik̂Ax1 + rF̂

e/h
A (−k̂A)e−ik̂Ax1 = aF̂

e/h
B (k̂B)eik̂Bx1 + bF̂

e/h
B (−k̂B)e−ik̂Bx1

aF̂
e/h
B (k̂B)eik̂Bx2 + bF̂

e/h
B (−k̂B)e−ik̂Bx2 = tF̂

e/h
A (k̂A)eik̂Ax2

for the four scalar unknowns r, a, b and t. Let us rewrite the system of linear equations in the
form

Q







r
a
b
t







=

(

−F̂
e/h
A (k̂A)eik̂Ax1

0

)

,

with Q ∈ C
4×4 given by

Q =

(

F̂
e/h
A (−k̂A)e−ik̂Ax1 −F̂

e/h
B (k̂B)eik̂Bx1 −F̂

e/h
B (−k̂B)e−ik̂Bx1 0

0 F̂
e/h
B (k̂B)eik̂Bx2 F̂

e/h
B (−k̂B)e−ik̂Bx2 −F̂

e/h
A (k̂A)eik̂Ax2

)

.

It remains to show that the matrix Q is regular in order to get uniquely defined coefficients
r, a, b and t. We omit to give a mathematical proof. Instead we point out that if the matrix
Q is not regular, the homogeneous case of the system of linear equations, i.e. with no incoming
envelope wave, does not necessarily imply that the coefficients r, a, b and t are zero. This means
that there can exist envelope waves inside the computational domain without the existence of
an incoming envelope wave which is a physical contradiction. Moreover, we point out, that in
our particular example the matrix Q is in fact regular and hence, the unknown coefficients r,
a, b and t are defined uniquely.
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(a) Norm of the analytical and numerical solutions.
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(b) Phases of the analytical and numerical solutions.

Figure 3.4: Comparison of the analytical solution (black) of the single barrier problem and the
numerical solution (red) using the centered FDS with the step size h = 1/450 and an energy
E = 25. The dotted line indicates schematically the band edge profile.



66 3. The Two-Band Kane-Model

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

wave vector

en
er

gy
analytical dispersion relation
discrete dispersion relation

E = 25

correct discrete wave vector

incorrect discrete wave vector

π/h

E = E
0
 + E

g
/2

Figure 3.5: Positive trunk of the discrete dispersion relation of the centered FDS for a band gap
Eg = 20, a middle of the band gap E0 = 0, a Kane-parameter P0 = 1 and a step size h = 1/450.
The blue line indicates the energy E = 25, used in this example with single barrier potential.

3.6.2.1 Numerical Solutions of the Envelope Functions

In this section we want to analyze the norm and the phase of the numerical results of the
introduced FDSs. Let us start with the second order centered FDS. We choose an energy
E = 25 and set E0,B = 10, Eg = 20 and P0 = 1. Moreover we set x1 = 1/3, x2 = 2/3 and
L = 1. Fig. 3.4 shows a comparison of the norms and the phases of the analytical solution and
the numerical solution for the step size h = 1/450.

We observe that the norm as well as the phase of the numerical solution using the centered
FDS oscillates in front of the barrier, i.e. in the domain [0, x1), and in the barrier, in the domain
[x1, x2). Behind the barrier, i.e. in the domain [x2, 1], the numerical solution does not oscillate
and the norm is constant. However, the norm is not equal to the norm of the analytical solution,
i.e. the numerical transmission coefficient differs significantly from the analytical transmission
coefficient. These oscillations and the difference of the analytical and numerical transmission
coefficient becomes smaller when using a smaller step size but the oscillations do not vanish.

This observation is in line with analysis of the discrete dispersion relation of the centered
FDS. In Fig. 3.5 the positive trunk of the discrete dispersion relation of the centered FDS is
shown. The parameters used are equal to the parameters in the domain A, i.e. Eg = 20, E0 = 0,
P0 = 1 and h = 1/450. The blue line indicates the energy E = 25, used in this example. Its
intersections with the green line of the discrete dispersion relation show the two solutions of the
discrete wave vector. The solution on the left is the correct value of the discrete wave vector
while the solution on the right is the wave vector that leads to the spurious oscillations.

Let us now apply the symmetrized FDS instead of the centered FDS. Fig. 3.4 shows a
comparison of the norms and the phases of the the analytical solution and the numerical solution
using the symmetrized FDS for the step size h = 1/450. We can see that the spurious oscillations
of the norm and the phase, we observed when using the centered FDS, vanish. Moreover,
the transmission is modeled more correctly and the norm as well as the phase are estimated
significantly better in the entire domain [0, 1].
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(a) Norm of the analytical and numerical solutions.
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(b) Phases of the analytical and numerical solutions.

Figure 3.6: Comparison of the analytical solution (black) of the single barrier problem and the
numerical solution (red) using the symmetrized FDS with the step size h = 1/450 and an energy
E = 25. The dotted line indicates schematically the band edge profile.
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Figure 3.7: Analytical transmission coefficient.

As expected, the symmetrized FDS does not lead to spurious oscillations. Moreover, we
note that the non-plane discrete exterior solution of the symmetrized FDS again does not affect
the numerical results. Therefore, we shall use the symmetrized FDS in the remainder of this
chapter.

3.6.2.2 The Transmission Coefficient

Now let us examine the behavior of the transmission coefficient versus the energy E. Therefore,
we set again Eg = 20, E0,B = 10 and P0 = 1 as well as L = 1, x1 = 1/3 and x2 = 2/3.
Fig. 3.7 shows the analytical transmission coefficient. The smallest energy yielding a resonance
is located at E ≈ 23.8.

In Fig. 3.8 the analytical transmission coefficient is compared with the numerical transmis-
sion coefficient of the symmetrized FDS in the vicinity of the first two resonance energies. As
can be seen in Fig. 3.8(a), the numerical transmission coefficient using the step size h = 1/300
overestimates the analytical transmission coefficient. This implies that the numerical transmis-
sion coefficient is greater than 1 near the resonance energies E ≈ 23.8 and E ≈ 31.3. This error
decreases if we use a smaller step size such as h = 1/450 in Fig. 3.8(b).

3.6.2.3 The L2-Error

Finally, we want to study the discrete L2-error of the numerical solution using the symmetrized
FDS and check if its formal numerical order can be confirmed numerically for the example with
single barrier potential. Recall that we have to solve the nonlinear problem (3.62) in order to
compute the discrete L2-error. In Fig. 3.9 the discrete L2-error ∆Fmin

h of the symmetrized FDS
is plotted against the number of grid points J = 1/h for an energy E = 25, a band gap Eg = 20
and a middle of the band gap E0,B = 10 at the barrier. We observe, that for the example with
single barrier potential, the discrete L2-error of the symmetrized FDS, which is formally of first
order, converges in fact in O(h).
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(a) Analytical and numerical transmission coefficient for h = 1/300.
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(b) Analytical and numerical transmission coefficient for h = 1/450.

Figure 3.8: Analytical transmission coefficient (black) and the transmission coefficient of the
symmetrized FDS (red) in the vicinity of the first two resonances for a step size h = 1/300 in
(a) and h = 1/450 in (b).
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Figure 3.9: L2-error of the symmetrized FDS for an energy E = 25, a band gap Eg = 20 and a
middle of the band gap E0,B = 10 at the barrier.

3.7 Summary

We introduced the so-called two-band Kane-model, solved the analytical exterior problem and
derived TBCs. By reducing the system to a scalar second order ODE we showed that it has a
unique solution.

Four different FDSs were introduced, the first order backward and forward FDSs, the sec-
ond order centered FDS and the first order symmetrized FDS. The discrete exterior problem,
however, could only be analyzed when using the second order centered FDS. The approach of
a discrete plane wave as a solution of the exterior problem of the symmetrized FDS could not
be verified mathematically and yields discrete waves that are not plane.

With the help of the discrete amplitudes and the discrete wave vectors we derived DTBCs.
We showed that the second order centered FDS leads to a significant error in the example

with single barrier potential including spurious oscillations. These oscillations are caused by the
discrete dispersion relation of the centered FDS. Since it is not injective in the interval

(
0, π

h

)
,

the discrete wave vector kh of the centered FDS corresponding to some energy E is not unique.
The discrete dispersion relation of the symmetrized FDS, however, is injective in

(
0, π

h

)
and

hence, the symmetrized FDS does not lead to spurious oscillations.



Chapter 4

The Two-Band k · p-Model

In Chap. 3 we pointed out that we need a certain regularization term on the diagonal of the
Hamiltonian H in order to use advanced discretization methods for the two-band model. This
regularization term leads us to the so-called two-band k · p-model. Basically, there are two
kinds of two-band k · p-models that differ in the choice of the regularization term, one being
a model of the coupling of conduction and valence band, a so-called inter-band model such as
the Kane-model, and the other being a model of the coupling of heavy and light hole band, a
so-called intra-band model of the valence bands.

The regularization term of the two-band k ·p-model with inter-band coupling that is added
to the Hamiltonian (3.2) of the Kane-model reads

−N
d2

dx2
, (4.1)

with

N =

(
ǫ 0
0 −ǫ

)

. (4.2)

Hence, the Hamiltonian of the two-band k · p model

HF = EF, (4.3)

with inter-band coupling takes the form

H =

(

−ǫ d2

dx2 + 1
2Eg(x) + E0(x) −iP0(x)

d
dx

−iP0(x)
d
dx ǫ d2

dx2 − 1
2Eg(x) + E0(x)

)

. (4.4)

On the other hand, the regularization term of the two-band k · p-model with intra-band
coupling is defined by

Nintra =

(
ǫ 0
0 ǫ

)

. (4.5)

In this chapter we will analyze the two-band k · p-model with inter-band coupling. For the
two-band k · p-model with intra-band coupling we refer to [23] and [9] as well as to Chap. 5
where we will study the general d-band k · p-model.

As before, we consider a semiconductor of length L connected to reservoirs at x = 0 and
x = L. We assume that the Kane-parameter P0(x) and the band edges Ec(x) and Ev(x) are
constant in the reservoirs, i.e.

P0(x) = P0,0, x ≤ 0,

P0(x) = P0,L, x ≥ L,

and

Eg(x) = Eg,0, x ≤ 0,

Eg(x) = Eg,L, x ≥ L,

71
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and

E0(x) = 0, x ≤ 0,

E0(x) = E0,L, x ≥ L.

4.1 The Exterior Problem and the Dispersion Relation

In this section we will analyze the exterior problem of the two-band k ·p-model with a constant
Kane-parameter P0, a constant band gap Eg and a constant middle of the band gap E0. Instead
of deriving results for the explicit values of the parameters in the exterior domains, we shall
consider some constant Kane-parameter P0, some constant band gap Eg and some constant
middle of the band gap E0. In order to determine the results of the exterior domains that are
needed in the following sections, we shall apply the specific values of the Kane-parameter P0,
the band gap Eg and the middle of the band gap E0 in the exterior domains to the results
stated.

If P0, Eg and E0 are constant Eq. (4.3) is a second order system of ODEs with constant
coefficients that can be written in the form

−N
d2

dx2
F + iM

d

dx
F + (V − E1)F = 0, (4.6)

with

M =

(
0 −P0

−P0 0

)

(4.7a)

and

V =

(
1
2Eg + E0

0 −1
2Eg + E0

)

. (4.7b)

In order to reduce Eq. (4.6) to a first order system of ODEs with constant coefficients we
introduce the substitution

Φ =

(
F
d
dxF

)

, (4.8)

to give the first order system of ODEs with constant coefficients

d

dx
Φ = AΦ, (4.9)

with

A =

(
0 1

N−1 (V − E1) iN−1M

)

∈ C
4×4. (4.10)

The solution of Eq. (4.9) takes the form

Φ(x) = aeκx, (4.11)

where κ = κ1, . . . , κ4 ∈ C is an eigenvalue and a = a(κ) ∈ C
4 the corresponding eigenvector of

the matrix A, cf. [41]. Let F̂ ∈ C
2 denote the amplitude of the vector F of envelope functions

that contains the first two components of a(κ) ∈ C
4, then the vector F of the envelope functions

becomes

F(x) = F̂eikx, (4.12)

where k = k̂ + iǩ = −iκ is called wave vector of F with the propagation coefficient k̂ and the
attenuation coefficient ǩ. If the attenuation coefficient ǩ is zero we say that F is traveling while
F is called evanescent otherwise. Analogously to Chap. 3, we shall refer to the vector F of the
envelope functions as envelope wave since it can be expressed in terms of a plane wave.
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By applying the solution (4.12) to the two-band k · p-model (4.3) we get

ĤF̂ = EF̂, (4.13)

with

Ĥ = Ĥ(k) =

(
Ĥ11(k) Ĥ12(k)

Ĥ21(k) Ĥ22(k)

)

=

(
ǫk2 + 1

2Eg + E0 P0k
P0k −ǫk2 − 1

2Eg + E0

)

. (4.14)

The characteristic polynomial implies

(E − E0)
2 −

(

ǫk2 +
1

2
Eg

)2

− P 2
0 k

2 = 0,

and hence, the wave vector k satisfies the relation

k4 +
1

ǫ2
(
ǫEg + P 2

0

)
k2 − 1

ǫ2

(

(E − E0)
2 − 1

4
E2

g

)

= 0,

that leads to

(

k2 +
1

2ǫ2
(
ǫEg + P 2

0

)
)2

=
1

4ǫ4
(
ǫEg + P 2

0

)2
+

1

ǫ2

(

(E − E0)
2 − 1

4
E2

g

)

. (4.15)

Since the right hand side of Eq. (4.15) can be written in the form

1

4ǫ4
(
ǫEg + P 2

0

)2
+

1

ǫ2

(

(E − E0)
2 − 1

4
E2

g

)

=
P 2

0

4ǫ4
(
P 2

0 + 2ǫEg

)
+

1

ǫ2
(E − E0)

2 ≥ 0,

the roots of Eq. (4.15) are real and read

k2 = − 1

2ǫ2
(
ǫEg + P 2

0

)
±
√

P 2
0

4ǫ4
(
P 2

0 + 2ǫEg

)
+

1

ǫ2
(E − E0)

2.

If the energy E satisfies the complement of the energy condition (3.8), i.e.

|E − E0| ≤
1

2
Eg, (4.16)

then we have
1

2ǫ2
(
ǫEg + P 2

0

)
≥
√

P 2
0

4ǫ4
(
P 2

0 + 2ǫEg

)
+

1

ǫ2
(E − E0)

2.

Hence, the wave vector k is purely imaginary and given by

k = ±iǩ1,2 ∈ iR, (4.17)

with the attenuation coefficient

ǩ1,2 =

√

1

2ǫ2
(
ǫEg + P 2

0

)
±
√

P 2
0

4ǫ4
(
P 2

0 + 2ǫEg

)
+

1

ǫ2
(E − E0)

2 ≥ 0.

Thus, if Eq. (4.16) is fulfilled we obtain four evanescent envelope waves and no traveling envelope
wave.

On the other hand, if the energy condition (3.8) is fulfilled, i.e.

|E − E0| >
1

2
Eg, (4.18)
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we get two real wave vectors
k = ±k̂ ∈ R, (4.19a)

with the propagation coefficient

k̂ =

√

− 1

2ǫ2
(
ǫEg + P 2

0

)
+

√

P 2
0

4ǫ4
(
P 2

0 + 2ǫEg

)
+

1

ǫ2
(E − E0)

2 > 0,

and two purely imaginary wave vectors

k = ±iǩ ∈ iR, (4.19b)

with

ǩ =

√

1

2ǫ2
(
ǫEg + P 2

0

)
+

√

P 2
0

4ǫ4
(
P 2

0 + 2ǫEg

)
+

1

ǫ2
(E − E0)

2 > 0.

This means that if Eq. (4.18) holds, we obtain two traveling envelope waves with the wave
vector k = ±k̂ and two evanescent envelope waves with the wave vector k = ±iǩ.

Eqs. (4.17) and (4.19) are called dispersion relations of the two-band k · p-model. Usually,
they are given in the reciprocal form, that can be obtained by calculating the energy eigenvalue
E of Ĥ. It yields

E = Ee/h(k) = E0 ±

√
(

ǫk2 +
1

2
Eg

)2

+ k2P 2
0 . (4.20)

The energy Ee that corresponds to the positive sign in Eq. (4.20) denotes the energy of the
electrons, while Eh associated with the negative sign in Eq. (4.20) is the energy of the holes.
Clearly, Ee/h(k) satisfies the energy condition (3.8) if and only if the wave vector k is real. In
this case, we will refer to the energy Ee as the energy of the conduction band and the energy
Eh as the energy of the valence band.

As a last step of the analysis of the exterior problem we will now specify the amplitude F̂
of the exterior solution. The amplitude

F̂(k) = F̂e/h(k) =

(

F̂
e/h
c (k)

F̂
e/h
v (k)

)

,

is an eigenvector of Ĥ(k) with the corresponding eigenvalue Ee/h(k). Therefore, it is not defined
uniquely and solves the under-determined linear equation

(

Ĥ11(k) − Ee/h(k)
)

F̂ e/h
c (k) + Ĥ12(k)F̂

e/h
v (k) = 0. (4.21)

Hence, the amplitude satisfies

F̂e/h(k) = c

(
Ĥ12(k)

Ee/h(k) − Ĥ11(k)

)

= c

(
kP0

Ee/h(k) − ǫk2 − 1
2Eg − E0

)

, (4.22)

with some arbitrary constant c ∈ C. Note that Fe(x, k) = F̂e(k)e±ikx is the energy eigenstate
associated with the energy Ee of the electrons while Fh(x, k) = F̂h(k)e±ikx corresponds to the
energy Eh of the holes, see Eq. (4.20).

If the energy condition |E − E0| > 1
2Eg is fulfilled, we obtain two evanescent and two

traveling envelope waves. For the two traveling solutions we assume additionally that they
are unitary and hence, the amplitude F̂e/h(k̂) has norm 1 and it satisfies the normalization

condition ∥
∥
∥F̂e/h(k̂)

∥
∥
∥

2

C

=
〈

F̂e/h(k̂), F̂e/h(k̂)
〉

= 1. (4.23)
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Since the matrix Ĥ(k̂) and its eigenvalues Ee/h(k̂) are real-valued, the eigenvectors F̂e/h(k̂) are
either also real-valued or purely imaginary. But since our approach in Eq. (4.12) implies that
F̂e/h(k̂) is the modulus of F, we shall assume that the amplitude F̂e/h(k̂) is real. Hence, the
normalization condition (3.15) becomes

F̂ e/h
c (k̂)2 + F̂ e/h

v (k̂)2 = 1. (4.24)

Thus, the amplitude F̂e/h(k̂) of a traveling envelope wave with norm 1 reads

F̂e/h(k̂) = ±







Ĥ12(k̂)
√

(Ee/h(k̂)−Ĥ11(k̂))
2
+Ĥ12(k̂)2

Ee/h(k̂)−Ĥ11(k̂)
√

(Ee/h(k̂)−Ĥ11(k̂))
2
+Ĥ12(k̂)2







= ±







k̂P0√

(Ee/h(k̂)−ǫk̂2− 1
2
Eg−E0)

2
+k̂2P 2

0

Ee/h(k̂)−ǫk̂2− 1
2
Eg−E0

√

(Ee/h(k̂)−ǫk̂2− 1
2
Eg−E0)

2
+k̂2P 2

0






.

(4.25)

Since the two solutions of the amplitude are linearly dependent, we can neglect the solution
with negative sign and set

F̂e/h(k̂) =







k̂P0√

(Ee/h(k̂)−ǫk̂2− 1
2
Eg−E0)

2
+k̂2P 2

0

Ee/h(k̂)−ǫk̂2 1
2
Eg−E0

√

(Ee/h(k̂)−ǫk̂2− 1
2
Eg−E0)

2
+k̂2P 2

0






. (4.26)

Remark 4.1. Since the amplitudes F̂e/h(±k̂) of traveling envelope waves are real-valued while
the amplitudes F̂e/h(±iǩ) of evanescent envelope waves have one purely imaginary component
and one real component, the amplitudes F̂e/h(±k̂) of traveling envelope waves are linearly
independent from the amplitudes F̂e/h(±iǩ) of evanescent envelope waves.

Analogously to Chap. 3 we will now prove

Proposition 4.2. Let k ∈ R be the wave vector of a traveling envelope wave. Then the two
solutions Fe(x, k) and Fh(x, k) of the free scattering state are orthogonal, i.e.

〈

Fe(x, k),Fh(x, k)
〉

= 0.

Proof. The scalar product of Fe(x, k) and Fh(x, k) can be reduced to

〈

Fe(x, k),Fh(x, k)
〉

=
〈

F̂e(k)eikx, F̂h(k)eikx
〉

= e2ikx
〈

F̂e(k), F̂h(k)
〉

,

and therefore, we only have to show that the amplitudes F̂e(k) and F̂h(k) are orthogonal. By
applying Eq. (4.26) to the scalar product of F̂e(k) and F̂h(k), we can rewrite it in the form

〈

F̂e(k), F̂h(k)
〉

=
Ĥ12(k)

√
(

Ee(k) − Ĥ11(k)
)2

+ Ĥ12(k)2

Ĥ12(k)
√
(

Eh(k) − Ĥ11(k)
)2

+ Ĥ12(k)2

+
Ee(k) − Ĥ11(k)

√
(

Ee(k) − Ĥ11(k)
)2

+ Ĥ12(k)2

Eh(k) − Ĥ11(k)
√
(

Eh(k) − Ĥ11(k)
)2

+ Ĥ12(k)2
.
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Considering the dispersion relation (4.20), we obtain

〈

F̂e(k), F̂h(k)
〉

=

(

Ĥ11(k) − E0

)2
+ Ĥ12(k)

2 −
(
ǫk2 + 1

2Eg

)2 − P 2
0 k

2

√
(

Ee(k) − Ĥ11(k)
)2

+ Ĥ12(k)2

√
(

Eh(k) − Ĥ11(k)
)2

+ Ĥ12(k)2
.

By using the identities
(

Ĥ11(k) − E0

)2
=

(

ǫk2 +
1

2
Eg

)2

and
Ĥ12(k)

2 = P 2
0 k

2,

we get 〈

F̂e(k), F̂h(k)
〉

= 0,

and hence, the two solutions Fe(x, k) and Fh(x, k) are orthogonal.

4.2 Transparent Boundary Conditions

In order to derive the TBCs for the two-band k ·p-model we will proceed as in Chaps. 2 and 3.
We will assume that a plane envelope wave with amplitude of norm 1 enters the computational
domain at x = 0. This implies that we require the energy to satisfy the energy condition
|E − E0| > 1

2Eg in the exterior domain. In contrast to the TBCs of the Kane-model, the
resulting reflected and transmitted envelope waves are a superposition of a traveling and an
evanescent envelope wave. Hence, we will use the fact that we know the amplitudes of traveling
and evanescent envelope waves in the exterior domains except for an arbitrary scalar.

Let k̂0 > 0 denote the propagation coefficient of the wave vector k0 in the left exterior
domain x ≤ 0, and k̂L > 0 the corresponding propagation coefficient of the wave vector kL

in the right exterior domain x ≥ L. Moreover, we will refer to ǩ0 > 0 as the attenuation
coefficient of an evanescent envelope wave in the left-exterior domain x ≤ 0, and ǩL > 0 as
the attenuation coefficient of an evanescent envelope wave in the right exterior domain x ≥ L.
Note that there cannot exist an evanescent envelope wave with negative attenuation coefficient
in the left exterior domain since this wave would tend to infinity for x→ −∞. The opposite is
true for the right exterior domain.

The incoming envelope wave takes the form

Fin = F̂
e/h
0 (k̂0)e

ik̂0x, x < 0. (4.27)

This wave is partly reflected at the left boundary at x = 0, yielding a superposition of a
left-traveling envelope wave and an evanescent envelope wave given by

Fr = r̂F̂
e/h
0 (−k̂0)e

−ik̂0x + řF̂
e/h
0 (−iǩ0)e

ǩ0x, x < 0, (4.28)

with the reflection coefficients r̂ and ř. Furthermore, the incoming envelope wave is partly
transmitted at the right boundary at x = L, which results in a superposition of a right-traveling
envelope wave and an evanescent envelope wave that takes the form

Ft = t̂F̂
e/h
L (k̂L)eik̂Lx + ťF̂

e/h
L (iǩL)e−ǩLx, x > L, (4.29)

with the transmission coefficients t̂ and ť. Thus, the solution in the left exterior domain can be
written in the form

F = Fin + Fr, x < 0, (4.30)
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and the solution in the right exterior domain is

F = Ft, x > L. (4.31)

In order to determine the TBC at the left boundary we evaluate the vector of the envelope
functions F and its first derivative d

dxF at x = 0. We get

F(0) = F̂
e/h
0 (k̂0) + r̂F̂

e/h
0 (−k̂0) + řF̂

e/h
0 (−iǩ0), (4.32a)

and
d

dx
F(0) = ik̂0F̂

e/h
0 (k̂0) − ik̂0r̂F̂

e/h
0 (−k̂0) + ǩ0řF̂

e/h
0 (−iǩ0). (4.32b)

Let us introduce

P0 =
(

F̂
e/h
0 (−k̂0) F̂

e/h
0 (−iǩ0)

)

∈ C
2×2,

and

K0 = diag
(

−ik̂0, ǩ0

)

∈ C
2×2,

as well as

r =

(
r̂
ř

)

∈ C
2.

Then we can rewrite the vector of the envelope functions F and its first derivative d
dxF at

x = 0 in the form

P0r = F(0) − F̂
e/h
0 (k̂0), (4.33a)

and

P0K0r =
d

dx
F(0) − ik̂0F̂

e/h
0 (k̂0). (4.33b)

Since the amplitudes F̂
e/h
0 (−k̂0) and F̂

e/h
0 (−iǩ0) are linearly independent, cf. Remark 4.1,

the matrix P0 is regular and hence, its inverse P−1
0 exists. Then the reflection coefficient vector

r reads

r = P−1
0

(

F(0) − F̂
e/h
0 (k̂0)

)

,

cf. Eq. (4.33a). Applied to Eq. (4.33b) we get the left TBC

Fx(0) − P0K0P
−1
0 F(0) =

(

ik̂1− P0K0P
−1
0

)

F̂
e/h
0 (k̂0). (4.34)

At the right boundary we proceed analogously. The function F and its first derivative d
dxF

at x = L read

F(L) = t̂F̂
e/h
L (k̂L)eik̂LL + ťF̂

e/h
L (iǩL)e−ǩLL, (4.35a)

and
d

dx
F(L) = ik̂Lt̂F̂

e/h
L (k̂L)eik̂LL − ǩLťF̂

e/h
L (iǩL)e−ǩLL. (4.35b)

Let us introduce

PL =
(

F̂
e/h
L (k̂L)eik̂LL F̂

e/h
L (iǩL)e−ǩLL

)

∈ C
2×2,

and

KL = diag
(

ik̂L,−ǩL

)

∈ C
2×2,

as well as

t =

(
t̂
ť

)

∈ C
2.
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Then we can rewrite the vector of the envelope functions F and its first derivative d
dxF at

x = L in the form
PLt = F(L), (4.36a)

and

PLKLt =
d

dx
F(L). (4.36b)

Since the amplitudes F̂
e/h
L (k̂L) and F̂

e/h
L (iǩL) are linearly independent, cf. Remark 4.1, the

vectors F̂
e/h
L (k̂L)eik̂LL and F̂

e/h
L (iǩL)e−ǩLL are also linearly independent. Hence, the matrix PL

is regular and its inverse P−1
L exists. Then the transmission coefficient vector t takes the form

t = P−1
L F(L),

cf. Eq. (4.36a). Applied to Eq. (4.36b) we get the right TBC

Fx(L) − PLKLP−1
L F(L) = 0. (4.37)

Remark 4.3. Ben Abdallah and Kefi-Ferhane showed in [9] that the two-band k ·p-model with
intra-band coupling together with the corresponding TBCs has a unique solution. However, it
is not trivial to transfer this proof to the two-band k ·p-model with inter-band coupling as given
in Eq. (4.3) together with the TBCs (4.34) and (4.37).

The strategy used in [9] is similar to the strategy used to show the uniqueness of the solution
of the scalar Schrödinger equation and its TBCs, cf. [8]. First the Eq. (4.3) is multiplied by
some arbitrary test function G and then integrated by parts. The resulting expression can be
split into a sum of a coercive form C(F,G), a sesquilinear form S(F,G) and a anti-linear form
A(G). According to the Riesz representation theorem, there exist compact operators RC and
RS as well as a function aL such that the coercive, sesquilinear and anti-linear forms can be
expressed as

C(F,G) = 〈RCF,G〉 ,
S(F,G) = 〈RSF,G〉 ,
A(G) = 〈aL,G〉 .

Then we obtain the weak formulation

(RC +RS)F = aL,

and by applying the Fredholm alternative we can show that this expression has a unique solution
if RC +RS is injective. This is equivalent to show that the solution of

(RC +RS)F = 0

is identically to zero. By setting G = F and taking the imaginary part of this expression we
end up with

SLBLF · BLF(L) − S0B0F · B0F(0) = 0,

where B0 and BL are some regular matrices and SL is a positive definite matrix, while S0 is
negative definite. Hence, we have F(0) = F(L) = 0. By taking the homogeneous TBCs and the
Cauchy-Lipschitz theorem into account, this implies that F vanishes everywhere.

In the appendix A.1 we prove that the two-band k · p-model with inter-band coupling can
also be expressed in terms of a coercive form C(F,G), a sesquilinear form S(F,G) and a anti-
linear form A(G). However, it remains to show the existence of a positive definite matrix SL

and a negative definite matrix S0 in order to finish the proof. While the two-band k · p-model
with intra-band coupling has only real wave vectors, the two-band k · p-model with inter-band
coupling has two real wave vectors and a complex conjugate pair of wave vectors. Basically, this
is the reason that transferring the proof of the two-band k · p-model with intra-band coupling
to our model is not trivial.
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4.3 Discretization

We recall the uniform grid xj = jh, j = 0, . . . , J , with L = Jh, of the computational interval
(0, L), with P0,j = P0(xj), Eg,j = Eg(xj), E0,j = E0(xj) and the approximation Fj ≈ F(xj),
j = 0, . . . , J .

Moreover, we recall the second order standard difference operator Dstd
h in order to discretize

the second derivative of the regularization term, as well as the second order centered difference
operator Dcen

h and the first order symmetrized discretization we introduced in Chap. 3 in order
to discretize the first order derivative.

In general, the discretization of the two-band k · p-model takes the form

M+
j Fj+1 +

(
M0

j − E1
)
Fj + M−

j Fj−1 = 0, j = 1, . . . , J − 1, (4.38)

where the matrices M+
j , M0

j and M−
j depend on the choice of the difference operator.

In Chap. 3 we showed that the matrices M+
j and M−

j are not regular if we use the sym-
metrized discretization. The two-band k · p-model contains a second derivative regularization
term such that the matrices M+

j and M−
j are regular if we use the symmetrized discretization

for the first derivative in the Hamiltonian H and the standard discretization for the second
derivative regularization term. But first let us start with the second order centered difference
operator Dcen

h to discretize the first derivative.

4.3.1 The Standard and Centered Finite Difference Scheme

When applying the second order centered difference operator Dcen
h to the first order derivative,

we get

M+,cen
j =

(
−ǫ 1

h2 −iP0,j
1
2h

−iP0,j
1
2h ǫ 1

h2

)

,

M0,cen
j =

(
ǫ 2

h2 + 1
2Eg,j + E0,j 0

0 −ǫ 2
h2 − 1

2Eg + E0

)

,

M−,cen
j =

(
−ǫ 1

h2 iP0,j
1
2h

iP0,j
1
2h ǫ 1

h2

)

.

(4.39)

In order to derive the DTBCs we have to find a solution of the discrete exterior problem. In
the exterior domains x ≤ 0 and x ≥ L the Kane-parameter P0, the band gap Eg and the middle
of the band gap E0 are constant. In this section, however, we will not use the specific values of
these parameters in the exterior domains. Instead we shall derive the results for some constant
Kane-parameter P0, some constant band gap Eg and some constant middle of the band gap E0.
Later we can use these results to determine the explicit solution in the exterior domains.

If P0, Eg and E0 are constant, the matrices M+,cen, M0,cen and M−,cen are constant. In the
sequel we shall omit the subscript j of these matrices.

In this case Eq. (4.38) is a second order linear difference equation with constant coefficients.
By introducing the substitution

Φj =

(
Fj

Fj+1

)

,

Eq. (4.38) can be transformed into a first order difference equation with constant coefficients
that reads

Φj = AcenΦj−1, (4.40)

with

Acen =

(
0 1

(−M+,cen)−1M−,cen (−M+,cen)−1
(
M0,cen − E1

)

)

∈ C
4×4.
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The solution of the first order difference equation is

Φj = aαj ,

where α ∈ C denotes an eigenvalue of Acen and a ∈ C
4 the corresponding eigenvector, cf.

Prop. 3.4. The first two components of Φj ∈ C
4 represent the discrete solution Fj ∈ C

2 of the

second order centered FDS. Thus, we introduce the discrete amplitude F̂h ∈ C
2 that contains

the first two components of a. Then the discrete solution Fj takes the form

Fj = F̂hα
j = F̂he

ikhjh, (4.41)

with the discrete wave vector

kh =
1

h
(arg(α) − i ln |α|) .

The form of the discrete solution (4.41) implies

Fj+1e
−ikhh = Fj = Fj−1e

ikhh,

and thus, applied to the difference equation (4.38) we obtain

Ĥcen
h F̂h = EF̂h, (4.42)

with

Ĥcen
h = Ĥcen

h (kh)

= M+,ceneikhh + M0,cen + M−,cene−ikhh

=

(
−ǫ 1

h2

(
eikhh + e−ikhh

)
+ ǫ 2

h2 + 1
2Eg + E0 −i 1

2hP0

(
eikhh − e−ikhh

)

−i 1
2hP0

(
eikhh − e−ikhh

)
ǫ 1

h2

(
eikhh + e−ikhh

)
− ǫ 2

h2 − 1
2Eg + E0

)

=

(
ǫ 2

h2 (1 − cos khh) + 1
2Eg + E0

1
hP0 sin khh

1
hP0 sin khh −ǫ 2

h2 (1 − cos khh) − 1
2Eg + E0

)

.

The characteristic polynomial of Ĥcen
h can be written in the form

(E − E0)
2 −

(

ǫ
2

h2
(1 − cos khh) +

1

2
Eg

)2

+
1

h2
P 2

0

(
cos2 khh− 1

)
= 0. (4.43)

Let us introduce the substitution

γ = cos khh = cosh ikhh, (4.44)

with the reciprocal

kh = ±i
1

h
ln
(

γ +
√

γ2 − 1
)

= ±1

h

(

arg
(

γ +
√

γ2 − 1
)

− i ln
∣
∣
∣γ +

√

γ2 − 1
∣
∣
∣

)

+ n
2π

h
,

with n ∈ Z.
Note that γ is real and greater than −1 if khh ∈ R ∪ iR. More precisely, γ ∈ [−1, 1] if and

only if khh ∈ R and γ > 1 if and only if khh ∈ iR.
Let us suppose that γ is real and greater than −1. If −1 < γ < 1, we have

ln
∣
∣
∣γ +

√

γ2 − 1
∣
∣
∣ = ln

∣
∣
∣γ + i

√

1 − γ2
∣
∣
∣ = ln

√

γ2 + 1 − γ2 = 0,

and hence, the wave vector is given by

kh = ±1

h
arg
(

γ + i
√

1 − γ2
)

+ n
2π

h
∈ R,
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for n ∈ Z. If γ ≥ 1, then we have

γ +
√

γ2 − 1 > 0,

and hence,

arg
(

γ +
√

γ2 − 1
)

= 0.

Thus, the wave vector takes the form

kh = ±i
1

h
ln
(

γ +
√

γ2 − 1
)

+ n
2π

h
∈ C,

for n ∈ Z.

In other words, if −1 < γ < 1, then we get a real-valued pair of discrete wave vectors,
yielding traveling envelope waves. On the other hand, if γ ≥ 1, then the wave vectors are
complex conjugate with zero real part for n = 0. If γ is real but less than −1, then the discrete
wave vector is complex with nonzero real part and nonzero imaginary part. If γ = −1, then the
discrete wave vector is undefined.

Let us suppose that limh→0 kh exists for n = 0. Then the limit does not exist for n 6= 0.
Therefore, we shall set n = 0 in the sequel. We will see later that the limit of the discrete wave
vectors with n = 0 in fact exists and equals the analytical values of the wave vector as given in
Eqs. (4.17) and (4.19).

Now let us show, that under reasonable assumptions, γ is in fact real and greater than −1.
Therefore, let us apply the substitution (4.44) to the characteristic polynomial (4.43). It yields

(E − E0)
2 −

(

ǫ
2

h2
γ −

(

ǫ
2

h2
+

1

2
Eg

))2

+
1

h2
P 2

0

(
γ2 − 1

)
= 0,

which implies

(

γ +
2ǫ
h2

(
2ǫ
h2 + 1

2Eg

)

P 2
0

h2 − 4ǫ2

h4

)2

=

(
2ǫ
h2

(
2ǫ
h2 + 1

2Eg

)

P 2
0

h2 − 4ǫ2

h4

)2

−
(

(E − E0)
2 −

(
2ǫ
h2 + 1

2Eg

)2 − P 2
0

h2

P 2
0

h2 − 4ǫ2

h4

)

. (4.45)

If we can show that the right hand side of Eq. (4.45) is nonnegative, the roots γ1,2 of Eq. (4.45)
are real. If the right hand side is positive, the real roots are distinct. First let us assume that
the energy E satisfies the condition (4.16), i.e.

|E − E0| ≤
1

2
Eg.

Then the right hand side of Eq. (4.45) can be written in the form

1
(

4ǫ2

h2 − P 2
0

)2

(

4ǫ2 (E − E0)
2 + P 4

0 + 2ǫP 2
0Eg + h2P 2

0

(
1

4
E2

g − (E − E0)
2

))

.

Clearly, it is nonnegative if Eq. (4.16) is fulfilled and

h 6= 2ǫ

P0
.

Hence, γ is real.

On the other hand, if we assume that the energy E satisfies Eq. (4.18), i.e.

|E − E0| >
1

2
Eg,
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and if we write the right hand side of Eq. (4.45) in the form

1
(

4ǫ2

h2 − P 2
0

)2

(
(
ǫEg + P 2

0

)2
+
(
4ǫ2 − h2P 2

0

)
(

(E − E0)
2 − 1

4
E2

g

))

,

we can see that it suffice to require the step size restriction

h <
2ǫ

P0
, (4.46)

in order to get a positive right hand side of Eq. (4.45) and hence, distinct real roots of Eq. (4.45).
Note that this inequality is not best possible, but since we need

h 6= 2ǫ

P0

to avoid undefined right hand sides of Eq. (4.45) the condition (4.46) is most practicable.

Thus, γ takes the form

γ1,2 =
4ǫ2

h2 + ǫEg

4ǫ2

h2 − P 2
0

± 1
4ǫ2

h2 − P 2
0

√

(
ǫEg + P 2

0

)2
+
(
4ǫ2 − h2P 2

0

)
(

(E − E0)
2 − 1

4
E2

g

)

= 1 +
ǫEg + P 2

0
4ǫ2

h2 − P 2
0

± 1
4ǫ2

h2 − P 2
0

√

(
ǫEg + P 2

0

)2
+
(
4ǫ2 − h2P 2

0

)
(

(E − E0)
2 − 1

4
E2

g

)

.

(4.47)

If the step size h suffices the step size condition (4.46), it is obvious that the root γ1, that
corresponds to the positive sign in Eq. (4.47), is greater than 1 and hence, yields a complex
conjugate pair of purely imaginary discrete wave vectors. On the other hand, the root γ2 is
greater than or equal to 1 if the energy E satisfies

|E − E0| ≤
1

2
Eg,

and less than 1, if

|E − E0| >
1

2
Eg.

In the first case, we obtain two complex conjugate pairs of purely imaginary discrete wave
vectors, while we get one real-valued pair and one purely imaginary, complex conjugate pair of
discrete wave vectors in the latter case.

Since the discrete wave vectors are either real-valued or purely imaginary, γ is always greater
than −1.

Let us summarize the results of the discrete wave vector kh. If the energy E satisfies

|E − E0| ≤
1

2
Eg,

and the step size is sufficiently small, i.e. Eq. (4.46) is fulfilled, than we obtain two complex
conjugate pairs of purely imaginary discrete wave vectors that read

kh = ±iǩh,1,2, (4.48)

with the discrete attenuation coefficients

ǩh,1,2 =
1

h
ln
(

γ1,2 +
√

γ2
1,2 − 1

)

,



4.3. Discretization 83

where γ1,2 is given by

γ1,2 = 1 +
ǫEg + P 2

0
4ǫ2

h2 − P 2
0

± 1
4ǫ2

h2 − P 2
0

√

(
ǫEg + P 2

0

)2
+
(
4ǫ2 − h2P 2

0

)
(

(E − E0)
2 − 1

4
E2

g

)

.

These real discrete wave vectors yield evanescent discrete waves.
On the other hand, if the energy E satisfies

|E − E0| >
1

2
Eg,

and the step size is sufficiently small, i.e. Eq. (4.46) is fulfilled, then we obtain one pair of
real discrete wave vectors, yielding traveling discrete waves, and one complex conjugate pair
of purely imaginary discrete wave vectors, yielding evanescent discrete waves. The pair of real
wave vectors takes the form

kh = ±k̂h, (4.49a)

with the discrete propagation coefficient

k̂h =
1

h
arg
(

γ + i
√

1 − γ2
)

,

where γ is given by

γ = 1 +
ǫEg + P 2

0
4ǫ2

h2 − P 2
0

− 1
4ǫ2

h2 − P 2
0

√

(
ǫEg + P 2

0

)2
+
(
4ǫ2 − h2P 2

0

)
(

(E − E0)
2 − 1

4
E2

g

)

.

The complex conjugate pair of purely imaginary wave vectors reads

kh = ±iǩh, (4.49b)

with the discrete attenuation coefficient

ǩh =
1

h
ln
(

γ +
√

γ2 − 1
)

,

and

γ = 1 +
ǫEg + P 2

0
4ǫ2

h2 − P 2
0

+
1

4ǫ2

h2 − P 2
0

√

(
ǫEg + P 2

0

)2
+
(
4ǫ2 − h2P 2

0

)
(

(E − E0)
2 − 1

4
E2

g

)

.

Eqs. (4.48) and (4.49) are called discrete dispersion relations of the second order centered
FDS of the two-band k ·p-model. Usually this relation is given in the reciprocal form which we
get by calculating the eigenvalue E of Ĥcen

h

E = E
e/h
h (kh) = E0 ±

√
(

ǫ
4

h2
sin2 khh

2
+

1

2
Eg

)2

+
1

h2
P 2

0 sin2 khh. (4.50)

As in the continuous case, the energy Ee
h associated with the positive sign in Eq. (4.50) denotes

the energy of the electrons, while Eh
h corresponding to the negative sign in Eq. (4.50) is the

energy of the holes.
By applying l’Hôpital’s rule, it can be shown that the discrete dispersion relation (4.50)

tends to the analytical dispersion relation (4.20) for h → 0. The same can be shown for the
discrete wave vectors (4.48) and (4.49).

Fig. 4.1 shows a comparison of the analytical dispersion relation of the two-band k ·p-model
and the discrete dispersion relation of the centered FDS for different Kane-parameters P0. In
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Figure 4.1: Comparison of the analytical dispersion relation (dotted line) of the two-band
k · p-model and the discrete dispersion relation of the centered FDS (solid line) for a step size
h = 1/300, a band gap Eg = 1000, a regularization parameter ǫ = 0.01 and a Kane-parameter
P0 = 1 in Fig. (a) and a Kane-parameter P0 = 0.01 in Fig. (b), respectively. The negative
wave vector axis corresponds to the purely imaginary wave vector k = iǩ of evanescent envelope
waves while the positive wave vector axis corresponds to the real wave vector k = k̂ of traveling
envelope waves. The dashed lines indicate the energy values Eg/2 and −Eg/2. Between these
energy levels the energy condition (4.18) is not fulfilled and there exist only imaginary wave
vectors.
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particular the behavior of the attenuation coefficients is shown. We observe that for small values
of the Kane-parameter, the trunk of the wave vector that is purely imaginary for all energies
intersects with the trunk of the wave vector that is purely imaginary if the energy satisfies
|E − E0| ≤ Eg/2 and real otherwise.

Let us finish the analysis of the discrete exterior problem by giving the the discrete amplitude
of the discrete exterior solutions. The discrete amplitude

F̂h(kh) = F̂
e/h
h (kh) =

(

F̂
e/h
h,c (kh)

F̂
e/h
h,v (kh)

)

is an eigenvector of Ĥcen
h (kh) with the corresponding eigenvalue E

e/h
h (kh). Hence, it is not

defined uniquely and solves the under-determined linear equation

(

Ĥcen
h,11(k̂h) − E

e/h
h (k̂h)

)

F̂
e/h
h,c (k̂h) + Ĥcen

h,12(k̂h)F̂
e/h
h,v (k̂h) = 0. (4.51)

Thus, the discrete amplitude can be written in the form

F̂
e/h
h (kh) = c

(

Ĥcen
h,12(kh)

E
e/h
h (kh) − Ĥcen

h,11(kh)

)

= c

(

P0
sin khh

h

E
e/h
h (kh) − ǫ 4

h2 sin2 khh
2 − 1

2Eg − E0

)

, (4.52)

with some arbitrary c ∈ C. Note that Fe
j(kh) = F̂e

h(kh)eikhjh is the energy eigenstate associated

with the energy Ee
h of the electrons while Fh

j (kh) = F̂h
h(kh)eikhjh corresponds to the energy Eh

h

of the holes, see Eq. (4.50).

If we assume that the energy condition |E − E0| > 1
2Eg is fulfilled we obtain two traveling

and two discrete evanescent envelope waves. For the two traveling envelope waves we shall

additionally assume that they are unitary, i.e. the discrete amplitude F̂
e/h
h (k̂h) has norm 1 and

it satisfies the normalization condition

∥
∥
∥F̂

e/h
h (k̂h)

∥
∥
∥

2

C

=

〈

F̂
e/h
h (k̂h), F̂

e/h
h (k̂h)

〉

= 1. (4.53)

Since Ĥcen
h (k̂h) and its eigenvalues E

e/h
h (k̂h) are real-valued, the eigenvectors F̂

e/h
h (k̂h) are either

also real-valued or purely imaginary. But since our approach in Eq. (4.41) implies that F̂
e/h
h (kh)

is the modulus of Fj , we shall assume that the discrete amplitude F̂
e/h
h (kh) is real. Hence, the

normalization condition (4.53) becomes

F̂
e/h
h,c (k̂h)2 + F̂

e/h
h,v (k̂h)2 = 1, (4.54)

and the amplitude F̂
e/h
h (k̂h) of a discrete traveling envelope wave with norm 1 reads

F̂
e/h
h (k̂h) = ±









Ĥcen
h,12(k̂h)

√
(

E
e/h
h

(k̂h)−Ĥcen
h,11(k̂h)

)2
+Ĥcen

h,12(k̂h)2

E
e/h
h

(k̂h)−Ĥcen
h,11(k̂h)

√
(

E
e/h
h

(k̂h)−Ĥcen
h,11(k̂h)

)2
+Ĥcen

h,12(k̂h)2









= ±











P0
sin k̂hh

h√
(

E
e/h
h

(k̂h)−ǫ 4
h2 sin2 k̂hh

2
− 1

2
Eg−E0

)2

+P 2
0

sin2 k̂hh

h2

E
e/h
h

(k̂h)−ǫ 4
h2 sin2 k̂hh

2
− 1

2
Eg−E0

√
(

E
e/h
h

(k̂h)−ǫ 4
h2 sin2 k̂hh

2
− 1

2
Eg−E0

)2

+P 2
0

sin2 k̂hh

h2











.

(4.55)
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Since the two solutions of the amplitude in Eq. (4.55) are linearly dependent, we can neglect
the solution with negative sign and set

F̂
e/h
h (k̂h) =











P0
sin k̂hh

h√
(

E
e/h
h

(k̂h)−ǫ 4
h2 sin2 k̂hh

2
− 1

2
Eg−E0

)2

+P 2
0

sin2 k̂hh

h2

E
e/h
h

(k̂h)−ǫ 4
h2 sin2 k̂hh

2
− 1

2
Eg−E0

√
(

E
e/h
h

(k̂h)−ǫ 4
h2 sin2 k̂hh

2
− 1

2
Eg−E0

)2

+P 2
0

sin2 k̂hh

h2











. (4.56)

Remark 4.4. Since the discrete amplitudes F̂
e/h
h (±k̂h) of discrete traveling envelope waves are

real-valued while the discrete amplitudes F̂
e/h
h (±iǩh) of discrete evanescent envelope waves have

a purely imaginary component and a real component, the discrete amplitudes F̂
e/h
h (±k̂h) of dis-

crete traveling envelope waves are linearly independent from the discrete amplitudes F̂
e/h
h (±iǩh)

of discrete evanescent envelope waves.

Analogously to Chap. 3, let us now analyze the periodicity of the discrete dispersion rela-
tion (4.50) of the centered FDS. Let will focus on traveling envelope waves with a real wave
vector kh ∈ R. The discrete amplitude satisfies

F̂
e/h
h

(

kh + n
2π

h

)

= F̂
e/h
h (kh), ∀n ∈ Z, kh ∈ R, (4.57)

and hence, it has a period of 2π
h in kh. Thus, the discrete envelope function

Fj = F̂
e/h
h (kh)eikhjh

is 2π
h -periodic in kh. On the other hand, the discrete dispersion relation of the centered FDS

satisfies

E
e/h
h

(

kh + n
2π

h

)

= E
e/h
h (kh), ∀n ∈ Z, kh ∈ R, (4.58)

and hence, it is also 2π
h in kh. However, it also consists of π

h -periodic terms. Before we will
analyze the influence of these π

h -periodic terms, let us note that the discrete dispersion relation
is an even function and hence, we can focus on the interval

(
0, π

h

)
.

Without loss of generality let us restrict our considerations to the energy of the electron
E = Ee. Then the discrete dispersion relation has a local minimum at kh = 0 and a second
local minimum at kh = π

h , i.e. at the boundaries of the considered interval. By applying the
extreme value theorem, we know that there exists a maximum of the discrete dispersion relation
in the interval

(
0, π

h

)
. Hence, the discrete dispersion relation is not injective in the domain

(
0, π

h

)
.

Obviously, there are no other extrema in this domain
(
0, π

h

)
. In other words, for any energy E

that satisfies

E0 +
1

2
Eg = Ee(0) < E < Ee

(π

h

)

= E0 +
1

2
Eg +

4ǫ

h2
,

there exists a unique discrete wave vector kh in the interval
(
0, π

h

)
that solves the discrete

dispersion relation. On the other hand, for any energy E that satisfies

E0 +
1

2
Eg +

4ǫ

h2
= Ee

(π

h

)

≤ E ≤ max
0<kh< π

h

Ee(kh),

there exist exactly two discrete wave vectors kh,1 and kh,2 in the interval
(
0, π

h

)
that solve the

discrete dispersion relation of the centered FDS. Fig. 4.2 illustrate this behavior of the discrete
dispersion relation of the centered FDS and compares it with the analytical dispersion relation
and the discrete dispersion relation of the symmetrized FDS we will introduce in the following
section.
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We will refer to the energy interval

E0 +
1

2
Eg = Ee(0) < E < Ee

(π

h

)

= E0 +
1

2
Eg +

4ǫ

h2
,

as energy window of the discrete dispersion relation of the centered FDS.

This means that for all energies E inside the energy window we do not expect spurious
oscillations as we observed for the centered FDS of the Kane-model in Chap. 3, while for any
energy outside the energy window we expect spurious oscillations if at least one of the parameters
of the two-band k ·p-model is not constant in the computational domain of the semiconductor.

In the next section we will introduce the symmetrized FDS for the two-band k · p-model
and will check if its discrete dispersion relation is again injective in the interval

(
0, π

h

)
as it is

for the two-band Kane-model. If so, the scheme is applicable not only for energies inside some
energy window.

4.3.2 The Standard and Symmetrized Finite Difference Scheme

When using the symmetrized FDS for the first order derivative in H we get the coefficient
matrices

M+,sym
j =

(
−ǫ 1

h2 −iP0,j
1
h

0 ǫ 1
h2

)

,

M0,sym
j =

(
ǫ 2

h2 + 1
2Eg,j + E0,j iP0,j

1
h

−iP0,j
1
h −ǫ 2

h2 − 1
2Eg,j + E0,j

)

,

M−,sym
j =

(
−ǫ 1

h2 0
iP0,j

1
h ǫ 1

h2

)

.

(4.59)

In the discrete exterior problem the Kane-parameter P0, the band gap Eg and the middle of
the band gap E0 are constant. Hence, the matrices M+,sym, M0,sym and M−,sym are constant.
In the sequel we shall omit the subscript j of these matrices.

Thus, Eq. (4.38) with the matrices as given in Eq. (4.59) is a second order difference equation
with constant coefficients. We recall the substitution

Φj =

(
Fj

Fj+1

)

,

and transform Eq. (4.38) into a first order difference equation with constant coefficients

Φj = AsymΦj−1, (4.60)

with

Asym =

(
0 1

(M+,sym)−1M−,sym (M+,sym)−1
(
M0,sym − E1

)

)

∈ C
4×4.

The solution of Eq. (4.60) has the form

Φj = aαj , (4.61)

where α ∈ C denotes an eigenvalue of Asym with the corresponding eigenvector a ∈ C
4, see

Prop. 3.4. The first two components of Φj ∈ C
4 represent the discrete solution Fj ∈ C

2 of the

first order symmetrized FDS. Thus, we introduce the discrete amplitude F̂h ∈ C
2 that contains

the first two components of a. The discrete solution Fj then takes the form

Fj = F̂hα
j = F̂he

ikhhj , (4.62)
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with the discrete wave vector

kh =
1

h
(arg(α) − i ln |α|) .

The form of the discrete solution (4.62) implies

Fj+1e
−ikhh = Fj = Fj−1e

ikhh,

and hence, applied to the difference equation (4.38) we obtain

Ĥsym
h F̂h = EF̂h, (4.63)

with

Ĥsym
h = Ĥsym

h (kh)

= M+,symeikhh + M0,sym + M−,syme−ikhh

=

(
−ǫ 1

h2

(
eikhh + e−ikhh

)
+ ǫ 2

h2 + 1
2Eg + E0 −i 1

hP0

(
eikhh − 1

)

−i 1
hP0

(
1 − e−ikhh

)
ǫ 1

h2

(
eikhh + e−ikhh

)
− ǫ 2

h2 − 1
2Eg + E0

)

=

(
ǫ 4

h2 sin2 khh
2 + 1

2Eg + E0
1
hP0 (− sin khh− i (1 − cos khh))

1
hP0 (− sin khh+ i (1 − cos khh)) −ǫ 4

h2 sin2 khh
2 − 1

2Eg + E0

)

.

Let us analyze the characteristic polynomial

0 = (E − E0)
2 −

(

ǫ
4

h2
sin2 khh

2
+

1

2
Eg

)2

− 1

h2
P 2

0

(

sin2 khh+ (1 − cos khh)
2
)

= (E − E0)
2 −

(

ǫ
4

h2
sin2 khh

2
+

1

2
Eg

)2

− 4

h2
P 2

0 sin2 khh

2

of Ĥsym
h . It implies

sin2 khh

2
= − h2

8ǫ2
(
ǫEg + P 2

0

)
±
√

h4

64ǫ4
(
ǫEg + P 2

0

)2
+

h4

16ǫ2

(

(E − E0)
2 − 1

4
E2

g

)

, (4.64)

if

(E − E0)
2 ≥ P 2

0

2ǫ

(

Eg −
P 2

0

2ǫ

)

. (4.65)

Note that Eq. (4.65) is always satisfied if the energy E fulfills the energy condition (4.18), i.e.

|E − E0| >
1

2
Eg.

On the other hand, if the energy condition is not satisfied, then Eq. (4.65) forms an additional
condition that needs to be satisfied to write the discrete wave vector kh in the form as given in
Eq. (4.64). However, we will neglect this case since it yields evanescent envelope waves only.

Hence, we get the following discrete wave vectors when applying the symmetrized FDS. If
the energy condition (4.18) is satisfied, i.e.

|E − E0| >
1

2
Eg,

we get one pair of real discrete wave vectors

kh = ±k̂h ∈ R, (4.66a)
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with the propagation coefficient

k̂h =
2

h
arcsin

√
√
√
√− h2

8ǫ2
(
ǫEg + P 2

0

)
+

√

h4

64ǫ4
(
ǫEg + P 2

0

)2
+

h4

16ǫ2

(

(E − E0)
2 − 1

4
E2

g

)

,

and one complex conjugate pair of purely imaginary discrete wave vectors

kh = ±iǩh, (4.66b)

with the attenuation coefficient

k̂h =
2

h
ln
(√

z2 + 1 − z
)

,

where z ∈ R is given by

z =

√
√
√
√ h2

8ǫ2
(
ǫEg + P 2

0

)
+

√

h4

64ǫ4
(
ǫEg + P 2

0

)2
+

h4

16ǫ2

(

(E − E0)
2 − 1

4
E2

g

)

.

On the other hand, if the energy condition (4.18) is not fulfilled, i.e.

|E − E0| ≤
1

2
Eg,

and moreover,
1

2
Eg ≤ 2ǫ2

P 2
0

(E − E0)
2 +

P 2
0

2

is satisfied, cf. Eq. (4.65), then the discrete wave vector kh is purely imaginary and reads

kh = ±iǩh, (4.67)

with the discrete attenuation coefficient

ǩ =
2

h
ln
(√

z2 + 1 − z
)

,

where z ∈ R is given by

z =

√
√
√
√ h2

8ǫ2
(
ǫEg + P 2

0

)
±
√

h4

64ǫ4
(
ǫEg + P 2

0

)2
+

h4

16ǫ2

(

(E − E0)
2 − 1

4
E2

g

)

.

From the characteristic polynomial of Ĥsym
h we can derive the reciprocal of the formulas of

the discrete wave vectors (4.66) and (4.67) to get the discrete dispersion relation

E = E
e/h
h (k̂h) = E0 ±

√
√
√
√

(

ǫ
4

h2
sin2 k̂hh

2
+
Eg

2

)2

+
4

h2
P 2

0 sin2 k̂hh

2
∈ R, (4.68)

where the positive sign corresponds to the energy Ee
h of the electrons and the negative sign

corresponds to the energy Eh
h of the holes.

By applying l’Hôpital’s rule, it can be shown that the discrete wave vectors (4.66) and (4.67)
as well as the discrete dispersion relation (4.68) tend to their analytical form for h→ 0.

Now we will specify the discrete amplitude F̂h(kh) of the symmetrized FDS. Analogously to
the centered FDS, the discrete amplitude

F̂h(kh) = F̂
e/h
h (kh) =

(

F̂
e/h
h,c (kh)

F̂
e/h
h,v (kh)

)

,
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reads

F̂
e/h
h (kh) = c

(

Ĥsym
h,12(kh)

E
e/h
h (kh) − Ĥsym

h,11(kh)

)

= c

(

− 1
hP0 (sin khh+ i (1 − cos khh))

E
e/h
h (kh) − ǫ 4

h2 sin2 khh
2 − 1

2Eg − E0

)

, (4.69)

with some arbitrary c ∈ C. The envelope wave Fe
j(kh) = F̂e

h(kh)e±ikhjh denotes the energy eigen-

state associated with the energy Ee
h of the electrons while Fh

j (kh) = F̂h
h(kh)e±ikhjh corresponds

to the energy Eh
h of the holes, see Eq. (4.68).

Let us additionally assume that the discrete waves are unitary, i.e. the discrete amplitude

F̂
e/h
h (k̂h) has norm 1. Then it also satisfies the normalization condition

∥
∥
∥F̂e/h(kh)

∥
∥
∥

2

C

=
〈

F̂e/h(kh), F̂e/h(kh)
〉

= 1.

Hence, the constant c reads

c =

(

F̂
e/h
h,c (kh)F̂

e/h
h,c (kh) + F̂

e/h
h,v (kh)F̂

e/h
h,v (kh)

)−1/2

=

(

4

h2
P 2

0 sin2 khh

2
+

(

E
e/h
h (kh) − ǫ

4

h2
sin2 khh

2
− 1

2
Eg − E0

)2
)−1/2

.

Analogously to Chap. 3, we observe that the symmetrized FDS leads to discrete traveling
envelope waves that are not plane. For any real discrete wave vector kh ∈ R, the conduction
band component is complex if h 6= n2π

kh
, n ∈ N, while the valence band component is real.

Remark 4.5. In contrast to Remark 4.4, we can not show that the discrete amplitudes

F̂
e/h
h (±k̂h) of discrete traveling envelope waves and the discrete amplitudes F̂

e/h
h (±iǩh) of dis-

crete evanescent envelope waves of the symmetrized FDS are generally linearly independent.
However, we note that in all considered examples it is the case.

Finally, we note that both the discrete dispersion relation of the symmetrized FDS and the
discrete envelope function are 2π

h -periodic in kh, see Eqs. (3.59) and (3.60). In contrast to the
centered FDS, the discrete dispersion relation of the symmetrized FDS does not consist of any
terms with other periodicity and it is injective in the domain

(
0, π

h

)
. This means that for any

admissible energy E there exists only one positive and one negative discrete wave vector kh that
solves the discrete dispersion relation of the symmetrized FDS.

This behavior is illustrated in Fig. 4.2 that shows a comparison of the discrete dispersion
relation of the symmetrized FDS with the analytical dispersion relation and the discrete dis-
persion relation of the centered FDS for a step size h = 1/100, a Kane-parameter P0 ≡ 1, a
band gap Eg ≡ 200, a middle of the band gap E0 ≡ 0 and two different values of the regular-
ization coefficient ǫ. We observe that for greater values of the regularization coefficient ǫ, the
energy window of the centered FDS almost coincides with the interval of admissible energies of
the symmetrized FDS, see Fig. 4.2(a). This demonstrates that the symmetrized FDS does not
imply a significant advantage compared to the centered FDS for the two-band k · p-model.

4.4 Discrete Transparent Boundary Conditions

In order to derive the DTBCs for the two-band k · p-model we apply the discrete solution
derived in the previous section to the reflection and transmission conditions (4.30), (4.31) and
assume that they hold in a small vicinity of the two boundaries, i.e. j = 0, 1 and j = J − 1, J
respectively.
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(a) Regularization coefficient ǫ = 0.01
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(b) Regularization coefficient ǫ = 0.001

Figure 4.2: Comparison of the positive trunks of the analytical dispersion relation (red) of the
two-band k · p-model and the discrete dispersions relation of the centered FDS (green) and
the symmetrized FDS (blue) for a step size h = 1/100, a Kane-parameter P0 = 1, a band gap
Eg = 200 and a regularization coefficient ǫ = 0.01 in Fig. (a) and a regularization coefficient
ǫ = 0.001 in Fig. (b), respectively. The horizontal dashed lines indicate the energy window of
the centered FDS.
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Let us assume that the energy E satisfies the energy condition (4.18) and that the step size
h is sufficiently small. Then we have one pair of real discrete wave vectors kh = ±k̂h, yielding
discrete traveling envelope waves, and one complex conjugate pair of purely imaginary discrete
wave vectors kh = ±iǩh, yielding discrete evanescent envelope waves. The explicit values of the
wave vectors in the exterior domains are identified by the subscripts 0 and L respectively. Let

F̂
e/h
h,0 (kh,0) denote the amplitude of a discrete wave with the discrete wave vector kh,0 in the

left exterior domain x ≤ 0 and let F̂
e/h
h,L(kh,L) denote the amplitude of a discrete wave with the

discrete wave vector kh,L in the right exterior domain x ≥ L.

Then we have

Fj = Fin
j + Fr

j = F̂
e/h
h,0 (k̂h,0)e

ik̂h,0xj + r̂hF̂
e/h
h,0 (−k̂h,0)e

−ik̂h,0xj + řhF̂
e/h
h,0 (−iǩh,0)e

ǩh,0xj ,

j = 0, 1, at the left boundary and

Fj = Ft
j = t̂hF̂

e/h
h,L(k̂h,L)eik̂h,Lxj + ťhF̂

e/h
h,L(iǩh,L)e−ǩh,Lxj ,

j = J − 1, J , at the right boundary.

Let us introduce

Ph,0 =
(

F̂
e/h
h,0 (−k̂h,0) F̂

e/h
h,0 (−iǩh,0)

)

∈ C
2×2,

and

Kh,0 = diag
(

e−ik̂h,0h, eǩh,0h
)

∈ C
2×2,

as well as

rh =

(
r̂h
řh

)

∈ C
2.

Then we can rewrite the discrete wave Fj for j = 0, 1 in the form

Ph,0rh = F0 − F̂
e/h
h,0 (k̂h,0), (4.70a)

and

Ph,0Kh,0rh = F1 − F̂
e/h
h,0 (k̂h,0)e

ik̂h,0h. (4.70b)

Since the discrete amplitudes F̂
e/h
h,0 (−k̂h,0) and F̂

e/h
h,0 (−iǩh,0) are linearly independent, cf. Re-

marks 4.4 and 4.5, the matrix Ph,0 is regular and hence, its inverse P−1
h,0 exists. Then the

reflection coefficient vector rh reads

rh = P−1
h,0

(

F0 − F̂
e/h
h,0 (k̂h,0)

)

,

cf. Eq. (4.70a). Applied to Eq. (4.70b) we get the left DTBC

F1 − Ph,0Kh,0P
−1
h,0F0 =

(

eik̂h,0h
1− Ph,0Kh,0P

−1
h,0

)

F̂
e/h
h,0 (k̂h,0). (4.71)

At the right boundary we proceed analogously. By introducing

Ph,L =
(

F̂
e/h
h,L(k̂h,L)eik̂h,LJh F̂

e/h
h,L(iǩh,L)e−ǩh,LJh

)

∈ C
2×2,

and

Kh,L = diag
(

e−ik̂h,Lh, eǩh,Lh
)

∈ C
2×2,

as well as

th =

(
t̂h
ťh

)

∈ C
2,
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we can rewrite the discrete wave Fj for j = J − 1, J in the form

Ph,Lth = FJ , (4.72a)

and

Ph,LKh,Lth = FJ−1. (4.72b)

Since the discrete amplitudes F̂
e/h
h,L(k̂h,L) and F̂

e/h
h,L(iǩh,L) are linearly independent, cf. Re-

marks 4.4 and 4.5, so are F̂
e/h
h,L(k̂h,L)eik̂h,LJh and F̂

e/h
h,L(iǩh,L)e−ǩh,LJh and hence, the matrix Ph,L

is regular and therefore, its inverse P−1
h,L exists. Then the transmission coefficient vector th

reads

th = P−1
h,LFJ ,

cf. Eq. (4.72a). Applied to Eq. (4.72b) we get the right DTBC

FJ−1 − Ph,LKh,LP−1
h,LFJ = 0. (4.73)

Remark 4.6. Note that the discrete formulation of the two-band k · p-model as given in
Eq. (4.38) together with the DTBCs (4.71) and (4.73) has a unique solution for all considered
examples, i.e. the band matrix of the coefficients of Eq. (4.38) for j = 1, . . . , J − 1, and the two
DTBCs is regular. However, it remains to prove a general existence theorem for the discrete
problem. We are confident that once a proof of the continuous problem is found, cf. Remark 4.6,
we can prove a discrete analogon.

4.5 Numerical Examples

4.5.1 The Free Scattering State

In our first example we want to compare the numerical results of the centered FDS and the
symmetrized FDS in the case of the free scattering state. We set ǫ = 1, P0 ≡ 1, E0 ≡ 200 and
Eg ≡ 0. The energy E is set to E = 250. With the help of the analytical solution of the free
scattering state given in Sec. 4.1, we will check the numerical order of the introduced FDSs.

The analytical solution of the free scattering has norm 1. Both the centered FDS and
the symmetrized FDS give results with norm 1 without any oscillations. The phases of the
analytical solution and the numerical solutions of the two FDSs are plotted in Fig. 4.3 for a
step size h = 1/100. While the phases of the numerical results almost coincide for the used
level of detail in Fig. 4.3, the phases of the numerical schemes differ slightly from the phase
of analytical scheme. The numerical wave lengths are smaller than the analytical wave length.
This error is directly caused by the difference of the analytical wave vector and the discrete
wave vectors. Thus, this error decreases for smaller step sizes.

Now let us analyze the discrete L2-error. Therefore we recall the nonlinear problem

∆Fmin
h = min

ϕ∈[−π,π]
∆Fh = min

ϕ∈[−π,π]

1

J + 1

√
√
√
√

J∑

j=0

‖F(xj) − Fjeiϕ‖2, (4.74)

with the analytical solution F(xj) at x = xj and the numerical solution Fj using the step size
h = 1/J .

The L2-errors of the numerical solutions are shown in Fig. 4.4. The numerical order evaluated
experimentally coincides for both FDSs with their formal order. While the discrete L2-error of
the centered FDS decays like O(h2) the discrete L2-error of the symmetrized FDS is in O(h).
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Figure 4.3: Comparison of the phases of the analytical solution (red) and the numerical solution
of the centered FDS (green) and the symmetrized FDS (blue) for the free scattering state with
ǫ = 1, P0 ≡ 1, Eg ≡ 200, E0 ≡ 0, a step size h = 1/100 and an energy E = 250.
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scattering state with ǫ = 1, P0 ≡ 1, Eg ≡ 200, E0 ≡ 0 and an energy E = 250.
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4.5.2 The Single Barrier Potential

In this section we will study the behavior of the introduced FDS when applied to a single barrier
potential. We will compare the numerical results with the analytical solution. In particular, we
want to examine if the centered FDS leads to spurious oscillations as it did in Chap. 3 when
applied to a single barrier potential.

We consider a semiconductor of length L that is split into three parts. Let 0 < x1 < x2 < L,
then the three subdomains of the semiconductor are defined by [0, x1), [x1, x2) and [x2, L]. The
two outer subdomains have the same physical properties and are denoted by A = [0, x1)∪[x2, L].
The inner subdomain is called B = [x1, x2).

We assume that the Kane-parameter P0 and the band gap Eg are constant, while the middle
of the band gap E0 is piecewise constant and satisfies

E0(x) = 0, x ∈ A,

and
E0(x) = E0,B, x ∈ B.

In other words, we add some potential E0,B to the band edges in the domain B. Note that we
can additionally vary the band gap and proceed analogously. But for simplicity we shall restrict
the variation to the middle of the band gap.

First let us derive the analytical solution. We suppose that the energy E satisfies the energy
condition (4.18) in the whole semiconductor, i.e.

E > E0(x) +
1

2
Eg(x), x ∈ [0, L].

In the three domains [0, x1), [x1, x2) and [x2, L] both the band gap Eg and the middle of the
band gap E0 are constant. Hence, in each domain the vector of the envelope functions takes
the form

F(x) = âF̂e/h(k̂)eik̂x + ǎF̂e/h(−iǩ)eǩx + b̂F̂e/h(−k̂)e−ik̂x + b̌F̂e/h(iǩ)e−ǩx,

with â, ǎ, b̂, b̌ ∈ C. The propagation and attenuation coefficients are given by

k̂A =

√

− 1

2ǫ2
(
ǫEg + P 2

0

)
+

√

P 2
0

4ǫ4
(
P 2

0 + 2ǫEg

)
+

1

ǫ2
E2,

and

ǩA =

√

1

2ǫ2
(
ǫEg + P 2

0

)
+

√

P 2
0

4ǫ4
(
P 2

0 + 2ǫEg

)
+

1

ǫ2
E2,

in the domain A, and

k̂B =

√

− 1

2ǫ2
(
ǫEg + P 2

0

)
+

√

P 2
0

4ǫ4
(
P 2

0 + 2ǫEg

)
+

1

ǫ2
(E − E0,B)2,

and

ǩB =

√

1

2ǫ2
(
ǫEg + P 2

0

)
+

√

P 2
0

4ǫ4
(
P 2

0 + 2ǫEg

)
+

1

ǫ2
(E − E0,B)2,

in the domain B.
Let F̂

e/h
A (k) denote the unitary amplitude of a wave with wave vector k in the domain A

and F̂
e/h
B (k) denote the corresponding, unitary amplitude in the domain B. We consider a

right-traveling envelope wave with amplitude F̂
e/h
A (k̂) that enters the semiconductor at x = 0.



96 4. The Two-Band k · p-Model

Since Eg is constant and E0 ≡ 0 in A, which means that the physical properties are equal to
the properties in the exterior domain x < 0, the incoming envelope wave is not reflected but
completely transmitted into the domain [0, x1). At x = x1 the envelope wave is partly reflected.
In the domain [x2, L] we expect a transmitted, right-traveling envelope wave that leaves the
semiconductor at x = L. For the same reason as at x = 0 we do not expect any reflection of
the transmitted wave at x = L. This leads to the vector of the envelope functions

F(x) =







FA1(x) if x ∈ [0, x1),
FB(x) if x ∈ [x1, x2),
FA2(x) if x ∈ [x2, L],

(4.75)

where

FA1(x) = F̂
e/h
A (k̂A)eik̂Ax + r̂F̂

e/h
A (−k̂A)e−ik̂Ax + řF̂

e/h
A (−iǩA)eǩAx,

FB(x) = âF̂
e/h
B (k̂B)eik̂Bx + ǎF̂

e/h
B (−iǩB)eǩBx + b̂F̂

e/h
B (−k̂B)e−ik̂Bx + b̌F̂

e/h
B (ik̂B)e−ǩBx,

FA2(x) = t̂F̂
e/h
A (k̂A)eik̂Ax + ťF̂

e/h
A (iǩA)e−ǩAx,

with the eight unknown coefficients r̂, ř, â, ǎ, b̂, b̌, t̂, ť ∈ C.
The vector of the envelope functions F and its derivative are continuous, see [24]. In partic-

ular, they are continuous at x = x1, x2. Hence, we get a system of eight linear equations that
can be written in the form

Qc = s,

with
c =

(

r̂ ř â ǎ b̂ b̌ t̂ ť
)T ∈ C

8,

and

s =








−F̂
e/h
A (k̂A)eik̂Ax1

0

−ik̂AF̂
e/h
A (k̂A)eik̂Ax1

0








∈ C
8,

and the coefficient matrix

Q =
(
qr̂ qř qâ qǎ qb̂ qb̌ qt̂ qť

)
∈ C

8×8,

whose columns are given by

qr̂ =








F̂
e/h
A (−k̂A)e−ik̂Ax1

0

−ik̂AF̂
e/h
A (−k̂A)e−ik̂Ax1

0







, qř =








F̂
e/h
A (−iǩA)eǩAx1

0

ǩAF̂
e/h
A (−iǩA)eǩAx1

0







,

qâ =








−F̂
e/h
B (k̂B)eik̂Bx1

F̂
e/h
B (k̂B)eik̂Bx2

−ik̂BF̂
e/h
B (k̂B)eik̂Bx1

ik̂BF̂
e/h
B (k̂B)eik̂Bx2







, qǎ =








−F̂
e/h
B (−iǩB)eǩBx1

F̂
e/h
B (−iǩB)eǩBx2

−ǩBF̂
e/h
B (−iǩB)eǩBx1

ǩBF̂
e/h
B (−iǩB)eǩBx2







,

qb̂ =








−F̂
e/h
B (−k̂B)e−ik̂Bx1

F̂
e/h
B (−k̂B)e−ik̂Bx2

ik̂BF̂
e/h
B (−k̂B)e−ik̂Bx1

−ik̂BF̂
e/h
B (−k̂B)e−ik̂Bx2







, qb̌ =








−F̂
e/h
B (iǩB)e−ǩBx1

F̂
e/h
B (iǩB)e−ǩBx2

ǩBF̂
e/h
B (iǩB)e−ǩBx1

−ǩBF̂
e/h
B (iǩB)e−ǩBx2







,

qt̂ =








0

−F̂
e/h
A (k̂A)eik̂Ax2

0

−ik̂AF̂
e/h
A (k̂A)eik̂Ax2







, qť =








0

−F̂
e/h
A (iǩA)e−ǩAx2

0

ǩAF̂
e/h
A (iǩA)e−ǩAx2







.
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Analogously to the single barrier problem in Chap. 3, we omit to give a mathematical proof
that the matrix Q is regular. Instead we argue that a singular matrix Q would imply that the
homogeneous case of the system of linear equations has a nonzero solution. This means that
there can exist envelope waves inside the computational domain without the existence of an
incoming envelope wave which is a physical contradiction. Furthermore, we note that in our
particular example the matrix Q is in fact regular and thus, the unknown coefficients r̂, ř, â,
ǎ, b̂, b̌, t̂ and ť are defined uniquely.

4.5.2.1 Numerical Solutions of the Envelope Functions

As shown above, we expect the centered FDS to have no spurious oscillations if the energy E
is less than the upper bound Ee, cen

h (π/h). For the given values of the parameters this upper
bound is

Ee, cen
h (π/h) = E0,B +

(

ǫ
4

h2
+

1

2
Eg

)

= 810200.

Since we choose the energy to be E = 250 < Ee, cen
h (π/h) we expect no spurious oscillations.

Fig. 4.5 shows a comparison of the norms and the phases of the analytical solution and
the numerical solution using the centered FDS. As the solution of the centered FDS and the
symmetrized FDS coincide for the used level of detail in Fig. 4.5, only the norm and phase of
the centered FDS is shown.

In fact, we do not observe any spurious oscillations of the numerical solution. In contrast,
the norm of the numerical solution of the centered FDS almost coincides with the norm of
the analytical solution in Fig. 4.5(a). However, we observe a small phase error in front of the
barrier. This phase error decreases when using a smaller step size and hence, can be ascribed
to the difference of the analytical and discrete wave vector.

4.5.2.2 The Transmission Coefficient

Let us briefly examine the behavior of the transmission coefficient versus the energy E. To do
this, we use the same settings as before, i.e. Eg = 200, E0,B = 100, P0 = 1 and ǫ = 1 as well
as L = 1, x1 = 1/3 and x2 = 2/3. Fig. 4.6(a) shows the analytical transmission coefficient. In
Fig. 4.6(b) the analytical transmission coefficient is compared with the numerical transmission
coefficient of the centered FDS for a step size h = 1/60. The results of the centered FDS
coincide with the results of the symmetrized FDS for the used level of detail in Fig. 4.6(b).
Therefore, only the numerical transmission coefficient of the centered FDS is plotted.

The smallest energy yielding a resonance is located at E ≈ 289. Note that we cannot observe
any numerical overestimation of the analytical transmission coefficient near the resonance as we
did in Chap. 3.

4.5.2.3 The L2-Error

Finally, we want to compare the discrete L2-errors of the numerical solutions using the centered
FDS and the symmetrized FDS respectively. In particular, we want to check if the numerical
order of the schemes is the same as the numerical order we observed in the the free scattering
state example. Let us recall the nonlinear problem (4.74) in order to evaluate the discrete L2-
error. In Fig. 4.7 the discrete L2-errors ∆Fmin

h of the centered and symmetrized FDS are plotted
against the number of grid points J = 1/h for an energy E = 250, a band gap Eg = 200 and
a middle of the band gap E0,B = 100 at the barrier. The numerical results confirm the formal
order of the symmetrized FDS. Its discrete L2-error decays like O(h). However, the centered
FDS is not of second order for this particular example while its discrete L2-error of the free
scattering state example is in O(h2), cf. Fig. 4.4. In order to explain this, let us set the Kane-
parameter to P0 = 0. In other words, we neglect the coupling between the conduction band
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(b) Phases of the analytical and numerical solutions.

Figure 4.5: Comparison of the analytical solution (black) of the single barrier problem and the
numerical solution (red) using the centered FDS for the step size h = 1/450 and an energy
E = 250. The dotted line indicates schematically the band edge profile.
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(b) Analytical (dotted line) and numerical (solid line) transmission coefficients for a step size h = 1/60.

Figure 4.6: Analytical transmission coefficient and the transmission coefficient of the centered
FDS for the step size h = 1/60.
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Figure 4.7: L2-errors of the centered FDS (solid line) and the symmetrized FDS (dashed line)
for an energy E = 250, a band gap Eg = 200 and a middle of the band gap E0,B = 100 at the
barrier.

and valence band. In this case we can analyze each band solution of the two-band k · p-model
separately. Let us focus on the conduction band. The two-band k · p-model of the conduction
band without coupling reduces to

−ǫ d2

dx2
Fc + EcFc = EFc. (4.76)

We use the identity

d2

dx2
Fc =




d

dx

(
d
dxFc

Fc

)

+

(
d
dxFc

Fc

)2


Fc

and end up with

−ǫ




d

dx

(
d
dxFc

Fc

)

+

(
d
dxFc

Fc

)2


 = Ec − E. (4.77)

If we apply a numerical scheme to Eq. (4.76) that is formally of second order we require the
envelope function Fc to be twice continuously differentiable. This implies that the left hand side
of Eq. (4.77) needs to be continuous. However, the right hand side has two jump discontinuities
at the barrier. Hence, the discrete L2-error of any numerical scheme of order two or higher
applied to an example with discontinuous band edge profile decays at most like O(h).

4.6 Summary

We introduced the two-band k ·p-model with inter-band coupling. Basically, this model is equal
to two-band Kane-model with added Laplace-operator on the diagonal. The Laplace operator
is multiplied by some regularization coefficient. We solved the analytical exterior problem and
found that for energies outside the band gap there exist not only traveling waves but also a
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pair of evanescent waves. These evanescent waves also had to be considered when deriving the
TBCs.

We analyzed the discrete exterior problem by introducing a scheme consisting of the standard
and centered FDS as well as a scheme that used the symmetrized FDS for the first order
derivative. Analogously to the Kane-model, the discrete exterior solution of the symmetrized
FDS is not plane but we showed that this has no notable effect on the numerical solution. We
pointed out that there exists an energy window for the centered FDS. Energies inside this window
do not yield spuriously oscillating solutions, as we observed for the Kane-model. This energy
window is proportional to the square of the number of grid points and to the regularization
coefficient. Hence, for greater values of the regularization coefficient the energy window increases
and it is almost identical to the interval of admissible energies of the symmetrized FDS.

After deriving the DTBCs analogously to the TBCs, we performed a numerical example with
constant band edge profile as well as an example with a single barrier potential. We showed
that the discrete L2-error of the centered FDS, which is formally of order two, converges only
in O(h) if the band edge profile is discontinuous. Hence, the centered FDS does not imply any
numerical advantage compared to the symmetrized FDS.





Chapter 5

The General k · p-Model

In the last step of generalization, we introduce the general k · p-model. Let d ∈ N denote the
number of considered bands of the semiconductor and F(x) ∈ C

d the vector of the envelope
functions F1, . . . , Fd ∈ C. Let m(x), e(x) ∈ R

d×d be diagonal, real and regular d × d-matrices,
Up(x),Upq(x),v(x) ∈ C

d×d Hermitian d× d-matrices and M0(x),M1(x),M2(x) ∈ C
d×d skew-

Hermitian d× d-matrices. Then we will refer to

EF(x) = − d

dx

(

m(x)
d

dx
F(x)

)

+ M0(x)
d

dx
F(x) − d

dx

(
MH

0 (x)F(x)
)

+ k1

(

M1(x)
d

dx
F(x) − d

dx

(
MH

1 (x)F(x)
)
)

+ k2

(

M2(x)
d

dx
F(x) − d

dx

(
MH

2 (x)F(x)
)
)

+ k1U1(x)F(x) + k2U2(x)F(x)

+ k2
1U11(x)F(x) + k2

2U22(x)F(x) + k1k2 (U12(x) + U21(x))F(x)

+ v(x)F(x) + e(x)F(x),

(5.1)

with x ∈ R and k1, k2 ∈ R, as d-band k · p-Schrödinger equation, cf. [5]. In order to abbreviate
this physical formulation we introduce the skew-Hermitian d× d-matrix

MS(x) = M0(x) + k1M1(x) + k2M2(x), (5.2a)

and the Hermitian d× d-matrix

V(x) =k1U1(x) + k2U2(x)

+ k2
1U11(x) + k2

2U22(x) + k1k2 (U12(x) + U21(x)) + v(x) + e(x).
(5.2b)

Then (5.1) reads

EF(x) = − d

dx

(

m(x)
d

dx
F(x)

)

+ MS(x)
d

dx
F(x) − d

dx

(
MH

S (x)F(x)
)

+ V(x)F(x), (5.3)

with x ∈ R.

We consider a semiconductor of length L connected to reservoirs at x = 0 and x = L. Let
us assume that the matrices m, MS and V are constant in the reservoirs with

m(x) ≡ m0, MS(x) ≡ MS,0, V(x) ≡ V0 x ≤ 0,

and

m(x) ≡ mL, MS(x) ≡ MS,L, V(x) ≡ VL x ≥ L.

103
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5.1 The Exterior Problem and the Dispersion Relation

Let us study the exterior problem of the general k · p-model. In the exterior domains the
matrices m, MS and V are constant. Without loss of generality, we focus on the left exterior
domain x ≤ 0 with m(x) = m0, MS(x) = MS,0 and V(x) = V0. Note that the results for the
right exterior domain x ≥ L can be derived analogously. For simplicity let us omit the subscript
0 in m0, MS,0 and V0. With these simplifying assumptions, Eq. (5.1) regarded on the half line
x ≤ 0 is a second order system of ODEs with constant coefficients that can be written in the
form

−N
d2

dx2
F + iM

d

dx
F + (V − E1)F = 0, x ≤ 0, (5.4)

with

N = m (5.5a)

and

M = −iMS + iMH
S = −2iMS. (5.5b)

Note that M is Hermitian since MS is skew-Hermitian.
By introducing the substitution

Φ =

(
F
d
dxF

)

, (5.6)

we can reduce Eq. (5.4) to a first order system of ODEs with constant coefficients

A
d

dx
Φ = BΦ, x ≤ 0, (5.7)

with

A =

(
M iN
−iN 0

)

∈ C
(2d)×(2d) (5.8)

and

B =

(
iV − iE1 0

0 −iN

)

∈ C
(2d)×(2d). (5.9)

Let us introduce the following notation

Definition 5.1 (cf. [35]). The inertia of the matrix A ∈ C
n×n is the ordered triple

in(A) = (in+(A), in−(A), in0(A)) ,

where in+(A) is the number of eigenvalues of A with positive real part, in−(A) is the number
of eigenvalues of A with negative real part and in0(A) is the number of eigenvalues of A with
zero real part, all counting multiplicity.

Zisowsky showed in [44] for the transient general k · p-model that the matrices

Atransient = A,

and

Btransient =

(
iV + s1 0

0 −iN

)

,

with the Laplace parameter s of the Laplace-transformed exterior problem, are regular for
Re(s) > 0. Moreover she proved a splitting theorem saying that the matrix A−1

transientBtransient

has exactly d eigenvalues with positive real part and d eigenvalues with negative real part, i.e.

in
(
A−1

transientBtransient

)
= (d, d, 0) .
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Our aim is to show a similar result for the stationary general k · p-model (5.7). First let us
show that A and B are regular and hence, A−1B exists and is also regular. Since Atransient = A,
the matrix A is regular and A−1B exists. Since V is Hermitian, it is diagonalizable with the
real eigenvalues v1, . . . , vd. Let us suppose that the energy E satisfies

E 6= vp, p = 1, . . . , d. (5.10)

then the matrix iV − iE1 is similar to diag (i (v1 − E) , . . . , i (vd − E)) which is regular. Con-
sidering that N is regular, the matrix B is regular and hence, the matrix A−1B is regular.

Thus, we can write Eq. (5.7) in the form

d

dx
Φ = A−1BΦ, x ≤ 0, (5.11)

with

A−1B =

(
0 1

N−1 (V − E1) iN−1M

)

∈ C
(2d)×(2d). (5.12)

The solution of Eq. (5.7) takes the form

Φ(x) = aeκx, x ≤ 0, (5.13)

where κ = κ1, . . . , κ2d ∈ C denotes an eigenvalue and a = a(κ) ∈ C
2d the corresponding

eigenvector of the matrix A−1B, cf. [41]. Since the vector of the envelope functions F is
represented by the first d components of Φ, we introduce the amplitude F̂ ∈ C

d of F that
contains the first d components of a(κ) ∈ C

2d. Then the vector of the envelope functions F
takes the form

F(x) = F̂eikx, (5.14)

where k = k̂ + iǩ = −iκ is called wave vector of F with the propagation coefficient k̂ and the
attenuation coefficient ǩ. If the attenuation coefficient ǩ is zero, we say that F is traveling,
while F is called evanescent otherwise. Again we shall refer to the vector F of the envelope
functions as envelope wave since it can be written in the form of a plane wave.

By applying the solution (5.13) to the general k · p-model (5.1) we get

ĤF̂ = EF̂, (5.15)

with

Ĥ = Ĥ(k) = k2N − kM + V. (5.16)

Note that Ĥ is Hermitian if k is real.

Now we are ready to state the main theorem of this chapter.

Theorem 5.1 (Splitting Theorem). Let n denote the number of positive eigenvalues of N.
Then there exists an energy Ee

0 ∈ R such that for all energies E > Ee
0

(i) the matrix A−1B has exactly 2n purely imaginary eigenvalues, n with positive imaginary
part and n with negative imaginary part,

(ii) the matrix A−1B has exactly 2 (d− n) complex eigenvalues, d− n with positive real part
and d− n with negative real part.

Furthermore, there exists an energy Eh
0 < Ee

0 such that for all energies E < Eh
0

(iii) the matrix A−1B has exactly 2 (d− n) purely imaginary eigenvalues, d− n with positive
imaginary part and d− n with negative imaginary part,
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(iv) the matrix A−1B has exactly 2n complex eigenvalues, n with positive real part and n with
negative real part.

Remark 5.2. The splitting theorem is needed in order to derive the TBCs in the following
section. For the simple case M = 0 and V = diag (v1, . . . , vd) a proof of Thm. 5.1 is provided
in the appendix A.2. For the general case, i.e. for Hermitian matrices M and V, numerical
evidence shows the correctness of Thm. 5.1. However, a general proof has not been found yet
and requires future work.

Considering that the wave vector k satisfies

k = −iκ,

we can state the following corollary of Thm 5.1.

Corollary 5.3. Let n denote the number of positive eigenvalues of N. Then there exists an
energy Ee

0 ∈ R such that for all energies E > Ee
0

(i) there are exactly n positive and n negative wave vectors (i.e. n right and n left-traveling
envelope waves),

(ii) there are exactly 2 (d− n) complex wave vectors, d− n with positive imaginary part (i.e.
d− n evanescent envelope waves decaying for x→ ∞) and d− n with negative imaginary
part (i.e. d− n evanescent envelope waves growing for x→ ∞).

Moreover, there exists an energy Eh
0 < Ee

0 such that for all energies E < Eh
0

(iii) there are exactly d−n positive and d−n negative wave vectors (i.e. d−n right and d−n
left-traveling envelope waves) and

(iv) there are exactly 2n complex wave vectors, n with positive imaginary part (i.e. n evanescent
envelope waves decaying for x→ ∞) and n with negative imaginary part (i.e. n evanescent
envelope waves growing for x→ ∞).

Remark 5.4. In all considered examples the d amplitudes F̂(k) that correspond to the n posi-
tive wave vectors and the d− n complex wave vectors with positive imaginary part are linearly
independent. Moreover, the d amplitudes F̂(k) associated with the n negative wave vectors and
the d− n complex wave vectors with negative imaginary part are linearly independent.

5.2 Transparent Boundary Conditions

Let us recall the strategy we used in the previous chapters in order to derive the TBCs. We
considered a traveling envelope wave Fin with amplitude of norm 1 that enters the computational
domain at x = 0. This means that depending on the energy E we require the matrix N to have
at least one positive or negative eigenvalue in order to get at least one pair of traveling envelope
waves.

Let us from now on assume that the energy E is greater than some lower bound Ee
0 and

hence, the number n of positive eigenvalues of N is equal to the number of pairs of traveling
envelope waves.

If there are two or more pairs of traveling envelope waves, the incoming envelope wave is
not unique. In this case we shall consider a unitary superposition of all right-traveling envelope
waves to enter the semiconductor at x = 0. This means that we have to specify a priori the
values of the n coefficients of the superposition of incoming envelope waves.

Let k̂+
0,l, l = 1, . . . , n, denote the n positive wave vectors and k̂−0,l, l = 1, . . . , n, the n negative

wave vectors in the left exterior domain. Moreover, let ǩ+
0,l, l = 1, . . . , d − n, denote the d − n
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complex wave vectors with positive imaginary part and ǩ−0,l, l = 1, . . . , d−n, the d−n complex
wave vectors with negative imaginary part in the left exterior domain. The wave vectors in the
right exterior domain are defined analogously with subscript L instead of 0.

Note that in all considered examples, e.g. the two-band k · p-model in Chap. 4, k̂+
l = −k̂−l ,

for l = 1, . . . , n, and ǩ+
l = −ǩ−l , for l = 1, . . . , d− n.

Let F̂0(k) denote the amplitude of norm 1 in the left exterior domain that corresponds to
the wave vector k, i.e. the eigenvector of norm 1 of Ĥ(k) to the energy eigenvalue E. On the
other hand, let F̂L(k) denote the corresponding amplitude in the right exterior domain.

Let us consider the superposition of all right-traveling envelope functions

Fin =
n∑

l=1

ωlF̂0(k̂
+
0,l)e

ik̂+
0,l

x, x < 0, (5.17)

with the coefficients ω1, . . . , ωn ∈ C that satisfy the normalization condition

n∑

l=1

|ωl|2 = 1. (5.18)

This incoming superposition of envelope functions is partly reflected at the left boundary at
x = 0, yielding a superposition of left-traveling and evanescent envelope functions that reads

Fr =
n∑

l=1

r̂lF̂0(k̂
−
0,l)e

ik̂−
0,l

x +
d−n∑

l=1

řlF̂0(ǩ
−
0,l)e

iǩ−
0,l

x, x < 0, (5.19)

with the reflection coefficients r̂l and řl. Furthermore, the incoming waves are partly transmitted
at the right boundary at x = L, which results in a superposition of right-traveling and evanescent
envelope functions that takes the form

Ft =
n∑

l=1

t̂lF̂0(k̂
+
0,l)e

ik̂+
0,l

x +
d−n∑

l=1

ťlF̂0(ǩ
+
0,l)e

iǩ+
0,l

x, x > L, (5.20)

with the transmission coefficients t̂l and ťl. Thus, the solution in the left exterior domain is
given by

F = Fin + Fr, x < 0, (5.21)

while the solution in the right exterior domain is

F = Ft, x > L. (5.22)

In order to determine the TBC at the left boundary we evaluate the envelope function F
and its first derivative d

dxF at x = 0. We get

F(0) =
n∑

l=1

ωlF̂0(k̂
+
0,l) +

n∑

l=1

r̂lF̂0(k̂
−
0,l) +

d−n∑

l=1

řlF̂0(ǩ
−
0,l) (5.23a)

and

d

dx
F(0) =

n∑

l=1

ik̂+
0,lωlF̂0(k̂

+
0,l) +

n∑

l=1

ik̂−0,lr̂lF̂0(k̂
−
0,l) +

d−n∑

l=1

iǩ−0,lřlF̂0(ǩ
−
0,l). (5.23b)

Let us introduce

P0 =
(

F̂0(k̂
−
0,1) · · · F̂0(k̂

−
0,n) F̂0(ǩ

−
0,1) · · · F̂0(ǩ

−
0,d−n)

)

∈ C
d×d,
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and
K0 = diag

(

ik̂−0,1, . . . , ik̂
−
0,n, iǩ

−
0,1, . . . , iǩ

−
0,d−n

)

∈ C
d×d,

as well as
r = (r̂1, . . . , r̂n, ř1, . . . , řd−n)T ∈ C

d.

Then we can rewrite the envelope wave F and its first derivative d
dxF at x = 0 in the form

P0r = F(0) −
n∑

l=1

ωlF̂0(k̂
+
0,l), (5.24a)

and

P0K0r =
d

dx
F(0) −

n∑

l=1

ik̂+
0,lωlF̂0(k̂

+
0,l). (5.24b)

Since the amplitudes

F̂0(k̂
−
0,1), . . . , F̂0(k̂

−
0,n), F̂0(ǩ

−
0,1), . . . , F̂0(ǩ

−
0,d−n)

are linearly independent, cf. Remark 5.4, the matrix P0 is regular and hence, its inverse P−1
0

exists. Then the reflection coefficient vector r reads

r = P−1
0

(

F(0) −
n∑

l=1

ωlF̂0(k̂
+
0,l)

)

,

cf. Eq. (5.24a). Applied to Eq. (5.24b) we get the left TBC

Fx(0) − P0K0P
−1
0 F(0) =

n∑

l=1

(

ik̂+
0,l1− P0K0P

−1
0

)

ωlF̂0(k̂
+
0,l). (5.25)

At the right boundary we proceed analogously. The envelope wave F and its first derivative
d
dxF at x = L read

F(L) =
n∑

l=1

t̂lF̂L(k̂+
L,l)e

ik̂+
L,l

L +
d−n∑

l=1

ťlF̂L(ǩ+
L,l)e

iǩ+
L,l

L, (5.26a)

and

d

dx
F(L) =

n∑

l=1

ik̂+
L,l t̂lF̂L(k̂+

L,l)e
ik̂+

L,l
L +

d−n∑

l=1

iǩ+
L,l ťlF̂L(ǩ+

L,l)e
iǩ+

L,l
L. (5.26b)

Let us introduce

PL =
(

F̂L(k̂+
L,1)e

ik̂+
L,1L · · · F̂L(k̂+

L,n)eik̂
+
L,n

L F̂L(ǩ+
L,1)e

iǩ+
L,1L · · · F̂L(ǩ+

L,d−n)eiǩ
+
L,d−n

L
)

∈ C
d×d,

and
KL = diag

(

ik̂+
L,1, . . . , ik̂

+
L,n, iǩ

+
L,1, . . . , iǩ

+
L,d−n

)

∈ C
d×d,

as well as
t =

(
t̂1, . . . , t̂n, ť1, . . . , ťd−n

)T ∈ C
d.

Then we can rewrite the envelope wave F and its first derivative d
dxF at x = L in the form

PLt = F(L), (5.27a)

and

PLKLt =
d

dx
F(L). (5.27b)
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Since the amplitudes

F̂L(k̂+
L,1), . . . , F̂L(k̂+

L,n), F̂L(ǩ+
L,1), . . . , F̂L(ǩ+

L,d−n)

are linearly independent, cf. Remark 5.4, so are

F̂L(k̂+
L,1)e

ik̂+
L,1L, . . . , F̂L(k̂+

L,n)eik̂
+
L,n

L, F̂L(ǩ+
L,1)e

iǩ+
L,1L, . . . , F̂L(ǩ+

L,d−n)eiǩ
+
L,d−n

L

and hence, the matrix PL is regular and its inverse P−1
L exists. Then the transmission coefficient

vector t becomes

t = P−1
L F(L),

cf. Eq. (5.27a). Applied to Eq. (5.27b) we get the right TBC

Fx(L) − PLKLP−1
L F(L) = 0. (5.28)

Remark 5.5. The coefficients ω1, . . . , ωn restrict the solution at the left boundary. However, in
physical applications, for example the unstrained eight-band k·p-model of the lowest conduction
band and the three top-most valence bands, all doubly degenerate, with k|| = 0 we will consider
in our numerical examples in Sec. 5.5, one typically considers only a particular incoming wave.
In the example mentioned above, we have n = 2, for E > Ee

0. As indicated, the bands are doubly
degenerate. Mathematically, this means that the eigenvalues of A−1B are 2-fold degenerate, i.e.
there exist d distinct wave vectors k and for every wave vector k there exist two corresponding
amplitudes, if the geometric multiplicity equals the algebraic multiplicity which is the case in
our example. In this particular example we have so-called spin-up solutions and spin-down

solutions. If we only consider spin-up envelope functions for example, we set the coefficient ω1

of the incoming spin-up envelope wave to one and the coefficient ω2 of the incoming spin-down
envelope wave to zero. Depending on the band edge profile the resulting transmitted envelope
waves may also consist of spin-down solutions.

5.3 Discretization

We recall the uniform grid xj = jh, j = 0, . . . , J with L = Jh, of the computational interval
(0, L) with Nj = N(xj), MSj = MS(xj), Vj = V(xj) and the approximation Fj ≈ F(xj),
j = 0, . . . , J . In order to discretize the general k · p-model (5.1) we apply the second order
centered difference operator Dcen

h as well as the standard second order difference operator Dstd
h

to the abbreviated continuous formulation of the general k · p-model (5.1)

EF = −NFxx + (−Nx + 2MS)Fx +
(
V − MH

S x

)
F, (5.29)

for x ∈ (0, L).
Thus the discretization of the general k · p-model leads to

EFj = −NjD
std
h Fj +

(
−Dcen

h Nj + 2MSj

)
Dcen

h Fj +
(

Vj − Dcen
h MH

S j − E1

)

Fj , (5.30)

with j = 1, . . . , J − 1, which implies

EFj =

(

− 1

h2
Nj +

1

2h

(

− 1

2h
(Nj+1 − Nj−1) + 2MSj

))

Fj+1

+

(
2

h2
Nj + Vj −

1

2h

(

MH
S j+1 − MH

S j−1

))

Fj

+

(

− 1

h2
Nj −

1

2h

(

− 1

2h
(Nj+1 − Nj−1) + 2MSj

))

Fj−1,

(5.31)
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with j = 1, . . . , J − 1.
In the exterior domains x ≤ 0 and x ≥ L, the matrices N, MS and V are constant. Without

loss of generality we focus on the left exterior domain x ≤ 0 with N(x) = N0, MS(x) = MS,0

and V(x) = V0. Note that the results for the right exterior domain x ≥ L can be derived
analogously. For simplicity let us omit the subscript 0 in N0, MS,0 and V0. Hence, Eq. (5.31)
is a second order difference equation with constant coefficients of the form

EFj = M+Fj+1 + M0Fj + M−Fj−1, j < 0, (5.32)

with

M+ = − 1

h2
N +

1

h
MS,

M0 =
2

h2
N + V,

M− = − 1

h2
N − 1

h
MS.

(5.33)

By introducing the substitution

Φj =

(
Fj

Fj+1

)

,

Eq. (5.32) can be transformed into a first order difference equation with constant coefficients

AhΦj = BhΦj−1, j < 0, (5.34)

with

Ah =

(
1 0
0 −M+

)

and

Bh =

(
0 1

M− (
M0 − E1

)

)

.

Note that M+ and M− are not necessarily regular. However, in all examples we examined
M+ and M− are regular. In this case, Ah and Bh are regular and hence, we can write Eq. (5.34)
in the form

Φj = A−1
h BhΦj−1, j < 0,

with the regular matrix

A−1
h Bh =

(
0 1

(−M+)−1M− (−M+)−1
(
M0 − E1

)

)

.

Remark 5.6. In all examples we examined the geometric multiplicity of the eigenvalues of
A−1

h Bh is equal to their algebraic multiplicity. Hence, the eigenvectors of A−1
h Bh are linearly

independent and form a basis of C
4d. This property is important in order to use Prop. 3.4 where

we set the discrete solution at the left boundary to some eigenvector a of A−1
h Bh.

According to Prop. 3.4, the solution of the first order difference equation can be written in
the form

Φj = aαj ,

with an eigenvalue α ∈ C of A−1
h Bh and the corresponding eigenvector a ∈ C

2d. The first d
components of Φj ∈ C

2d represent the discrete solution Fj ∈ C
d. Therefore, we introduce the

discrete amplitude F̂h ∈ C
d that contains the first d components of a. The discrete solution Fj

becomes
Fj = F̂hα

j = F̂he
ikhjh, (5.35)
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with the discrete wave vector

kh =
1

h
(arg(α) − i ln |α|) .

The discrete solution as given in Eq. (5.35) implies

Fj+1e
−ikhh = Fj = Fj−1e

ikhh,

and thus, applied to the difference equation (5.32) we obtain

ĤhF̂h = EF̂h, (5.36)

with

Ĥh = Ĥh(kh) = M+eikhh + M0 + M−e−ikhh.

Now we shall state the discrete analogon of Thm. 5.1.

Theorem 5.7 (Discrete Splitting Theorem). Let n denote the number of positive eigenvalues
of N. Then there exists an energy Ee

h,0 ∈ R such that for all energies E > Ee
h,0

(i) the matrix A−1
h Bh has exactly 2n eigenvalues with modulus 1, n having a positive complex

argument and n having a negative complex argument,

(ii) the matrix A−1
h Bh has exactly d− n eigenvalues with modulus greater than 1 and d− n

eigenvalues with modulus smaller than 1.

Furthermore, there exists an energy Eh
0 < Ee

0 such that for all energies E < Eh
0

(iii) the matrix A−1
h Bh has exactly 2 (d− n) eigenvalues with modulus 1, d−n having a positive

complex argument and d− n having a negative complex argument,

(iv) the matrix A−1
h Bh has exactly n eigenvalues with modulus greater than 1 and n eigenvalues

with modulus smaller than 1.

Remark 5.8. The discrete splitting theorem is needed in order to derive the DTBCs in the fol-
lowing section. Analogously to Thm. 5.1, numerical evidence shows the correctness of Thm. 5.7.
Once a proof for the continuous splitting theorem 5.1 has been found, we are confident to be
able to derive a proof of Thm. 5.7 as discrete analogon.

By using the identity

kh =
1

h
(arg(α) − i ln |α|) ,

it follows

Corollary 5.9. Let n denote the number of positive eigenvalues of N. Then there exists an
energy Ee

0,h ∈ R such that for all energies E > Ee
h,0

(i) there are exactly n positive and n negative discrete wave vectors (i.e. n right and n left-
traveling discrete envelope waves),

(ii) there are exactly 2 (d− n) complex discrete wave vectors, d − n with positive imaginary
part (i.e. d − n evanescent discrete envelope waves decaying for x → ∞) and d − n with
negative imaginary part (i.e. d−n evanescent discrete envelope waves growing for x→ ∞).

Moreover, there exists an energy Eh
h,0 < Ee

h,0 such that for all energies E < Eh
h,0

(iii) there are exactly d− n positive and d− n negative discrete wave vectors (i.e. d− n right
and d− n left-traveling discrete envelope waves) and
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(iv) there are exactly 2n complex discrete wave vectors, n with positive imaginary part (i.e. n
evanescent discrete envelope waves decaying for x → ∞) and n with negative imaginary
part (i.e. n evanescent discrete envelope waves growing for x→ ∞).

Remark 5.10. We already pointed out that in all considered examples the geometric mul-
tiplicity of the eigenvalues of A−1

h Bh is equal to their algebraic multiplicity and hence, the
eigenvectors are linearly independent. In addition, we note that for all considered examples
the d discrete amplitudes F̂h(kh) that correspond to the n positive discrete wave vectors and
the d− n complex discrete wave vectors with positive imaginary part are linearly independent.
Moreover, the d discrete amplitudes F̂h(kh) that are associated with the n negative discrete
wave vectors and the d − n complex discrete wave vectors with negative imaginary part are
linearly independent.

5.4 Discrete Transparent Boundary Conditions

In order to derive the DTBCs for the general k ·p-model we apply the discrete solution derived
in the previous section to the reflection and transmission conditions (5.21), (5.22) and assume
that they hold in a small vicinity of the two boundaries, i.e. j = 0, 1 and j = J−1, J respectively.

Let us from now on assume that the energy is greater than some lower bound Ee
h,0 and

hence, the number n of positive eigenvalues of N is equal to the number of purely imaginary,
complex conjugate pairs of discrete wave vectors.

Suppose that there is at least one pair of discrete traveling envelope functions, in other
words n ≥ 1. If n ≥ 2, then we have two or more pairs of traveling envelope functions and
hence, the incoming envelope function is not unique. In this case we shall proceed accordingly
to the derivation of the TBCs and consider a unitary superposition of all discrete right-traveling
envelope functions weighted by the coefficients ω1, . . . , ωn ∈ C.

Let k̂+
h,0,l, l = 1, . . . , n, denote the n positive discrete wave vectors and k̂−h,0,l, l = 1, . . . , n,

the n negative discrete wave vectors in the left exterior domain. Moreover, the d − n complex
discrete wave vectors with positive imaginary part in the left exterior domain are called ǩ+

h,0,l,
l = 1, . . . , d− n, and the d− n complex discrete wave vectors with negative imaginary part are
denoted by ǩ−h,0,l, l = 1, . . . , d − n. The discrete wave vectors in the right exterior domain are
defined analogously with subscript L instead of 0.

In all considered examples, e.g. the two-band k · p-model in Chap. 4, we have k̂+
h,l = −k̂−h,l,

for l = 1, . . . , n, and ǩ+
h,l = −ǩ−h,l, for l = 1, . . . , d− n.

Let F̂h,0(kh) denote the amplitude of norm 1 in the left exterior domain that corresponds to
the discrete wave vector kh, i.e. the eigenvector of norm 1 of Ĥh(kh) to the energy eigenvalue E.
On the other hand, let F̂h,L(kh) be the corresponding amplitude in the right exterior domain.

Then we have

Fj = Fin
j + Fr

j =
n∑

l=1

ωlF̂h,0(k̂
+
h,0,l)e

ik̂+
h,0,l

jh

+
n∑

l=1

r̂h,lF̂h,0(k̂
−
h,0,l)e

ik̂−
h,0,l

jh +
d−n∑

l=1

řh,lF̂h,0(ǩ
−
h,0,l)e

iǩ−
h,0,l

jh,

at the left boundary, i.e. for j = 0, 1, and

Fj = Ft
j =

n∑

l=1

t̂hF̂h,L(k̂+
h,L,l)e

ik̂+
h,L,l

jh +
d−n∑

l=1

ťhF̂h,L(ǩ+
h,L,l)e

iǩ+
h,L,l

jh,

at the right boundary, i.e. for j = J − 1, J .
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Let us introduce

Ph,0 =
(

F̂h,0(k̂
−
h,0,1) · · · F̂h,0(k̂

−
h,0,n) F̂h,0(ǩ

−
h,0,1) · · · F̂h,0(ǩ

−
h,0,d−n)

)

∈ C
d×d,

and

Kh,0 = diag
(

eik̂
−
h,0,1h, . . . , eik̂

−
h,0,n

h, eiǩ
−
h,0,1h, . . . , eiǩ

−
h,0,d−n

h
)

∈ C
d×d,

as well as

rh = (r̂h,1, . . . , r̂h,n, řh,1, . . . , řh,d−n)T ∈ C
d.

Then we can rewrite the discrete envelope function Fj for j = 0, 1 in the form

Ph,0rh = F0 −
n∑

l=1

ωlF̂h,0(k̂
+
h,0,l), (5.37a)

and

Ph,0Kh,0rh = F1 −
n∑

l=1

ωlF̂h,0(k̂
+
h,0,l)e

ik̂+
h,0,l

h. (5.37b)

Since the discrete amplitudes

F̂h,0(k̂
−
h,0,1), . . . , F̂h,0(k̂

−
h,0,n), F̂h,0(ǩ

−
h,0,1), . . . , F̂h,0(ǩ

−
h,0,d−n)

are linearly independent, cf. Remark 5.10, the matrix Ph,0 is regular and hence, its inverse P−1
h,0

exists. Then the reflection coefficient vector rh is given by

rh = P−1
h,0

(

F0 −
n∑

l=1

ωlF̂h,0(k̂
+
h,0,l)

)

,

cf. Eq. (5.37a). Applied to Eq. (5.37b) we get the left DTBC

F1 − Ph,0Kh,0P
−1
h,0F0 =

n∑

l=1

(

eik̂
+
h,0,l1− Ph,0Kh,0P

−1
h,0

)

ωlF̂h,0(k̂
+
h,0,l), (5.38)

compared to the left TBC (5.25).

At the right boundary we proceed analogously. Let us introduce

Ph,L =
(
p̂1 · · · p̂n p̌1 · · · p̌d−n

)
∈ C

d×d,

with the columns

p̂l = F̂h,L(k̂+
h,L,l)e

ik̂+
h,L,l

hJ ,

and

p̌l = F̂h,L(ǩ+
h,L,l)e

iǩ+
h,L,l

hJ .

Moreover, we introduce

Kh,L = diag
(

e−ik̂+
h,L,1h, . . . , e−ik̂+

h,L,n
h, e−iǩ+

h,L,1h, . . . , e−iǩ+
h,L,d−n

h
)

∈ C
d×d,

as well as

th =
(
t̂h,1, . . . , t̂h,n, ťh,1, . . . , ťh,d−n

)T ∈ C
d.

Then we can rewrite the discrete envelope function Fj for j = J − 1, J in the form

Ph,Lth = FJ , (5.39a)
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and
Ph,LKh,Lth = FJ−1. (5.39b)

Since the discrete amplitudes

F̂h,L(k̂+
h,L,1), . . . , F̂h,L(k̂+

h,L,n), F̂h,L(ǩ+
h,L,1), . . . , F̂h,L(ǩ+

h,L,d−n)

are linearly independent, cf. Remark 5.10, so are

F̂h,L(k̂+
h,L,1)e

ik̂+
h,L,1hJ , . . . , F̂h,L(k̂+

h,L,n)eik̂
+
h,L,n

hJ ,

F̂h,L(ǩ+
h,L,1)e

iǩ+
h,L,1hJ , . . . , F̂h,L(ǩ+

h,L,d−n)eiǩ
+
h,L,d−n

hJ

and hence, the matrix Ph,L is regular and its inverse P−1
h,L exists. Then the transmission

coefficient vector th reads
th = P−1

h,LFJ ,

cf. Eq. (5.39a). Applied to Eq. (5.39b) we get the right DTBC

FJ−1 − Ph,LKh,LP−1
h,LFJ = 0, (5.40)

in contrast to the right TBC (5.28).

5.5 Numerical Examples

5.5.1 The Free Scattering State

In our first example, we want to examine the numerical result of an unstrained eight-band
k · p-model of the lowest conduction band and the three top-most valence bands, all doubly
degenerate, with k|| = 0, in the case of the free scattering state and compare it with the
analytical solution, that can be derived from the results in Sec. 5.1.

In this case the 8 × 8-k · p-Hamiltonian reduces to

H = H0 + H∆ + H1
d

dx
+ H2

d2

dx2
, (5.41)

where H0 describes the band edge profile, H∆ denotes the spin orbit coupling, H1 contains all
first order couplings, i.e. the inter-band couplings, and H2 contains all second order couplings,
i.e. the intra-band couplings, see [19].

The band edge profile is given by

H0 = diag (Ec, Ev, Ev, Ev, Ec, Ev, Ev, Ev) , (5.42)

where Ec is the conduction band edge and Ev is the valence band edge with the Eg = Ec −Ev.
The spin orbit coupling matrix H∆ takes the form

H∆ =

(
G + iGz Gy + iGx

−Gy + iGx Gso − iGz

)

, (5.43)

with

Gso =
∆so

3
diag (0,−1,−1,−1) ,

Gx =
∆so

3







0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0






,



5.5. Numerical Examples 115

Gy =
∆so

3







0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0






,

Gz =
∆so

3







0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0






.

The parameter ∆so denotes the so-called spin orbit splitting.

The matrix of first order couplings reads

H1 =















0 0 0 P0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−P0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −P0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 P0 0 0 0















(5.44)

while the matrix of second order couplings takes the form

H2 = −diag (α, µ, µ, λ, α, µ, µ, λ) , (5.45)

where the coefficients α, λ, µ ∈ C are given by

α =
~

2

2mc
− P 2

0

Eg

Eg + 2∆so
3

Eg + ∆so
,

λ =
P 2

0

Eg
− ~

2

2m0
(γ1 + 4γ2) ,

µ = − ~
2

2m0
(γ1 − 2γ2) ,

with the effective mass mc of the conduction band and the Luttinger parameters γ1 and γ2.

Written in the usual notation

−N
d2

dx2
F + iM

d

dx
F + (V − E1)F = 0, (5.46)

cf. Eq. (5.4), we have

N = −H2 = diag (α, µ, µ, λ, α, µ, µ, λ) ,

M = −iH1 =















0 0 0 −iP0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

iP0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 iP0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −iP0 0 0 0














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and

V = H0+H∆ =
















Ec 0 0 0 0 0 0 0

0 Ev − ∆so
3 −i∆so

3 0 0 0 0 ∆so
3

0 i∆so
3 Ev − ∆so

3 0 0 0 0 −i∆so
3

0 0 0 Ev − ∆so
3 0 −∆so

3 i∆so
3 0

0 0 0 0 Ec 0 0 0

0 0 0 −∆so
3 0 Ev − ∆so

3 i∆so
3 0

0 0 0 −i∆so
3 0 −i∆so

3 Ev − ∆so
3 0

0 ∆so
3 i∆so

3 0 0 0 0 Ev − ∆so
3
















.

For simplicity, we set ~ = m0 = 1 as well as L = 1. We use the dimensionless version of the
parameters as given in [24] that are given by α = 3.32, λ = −18.77, µ = −3.24, P0 = 132.744
and ∆so = 419.07. According to [24], we set the band edges to Ec = 905.96 and Ev = 0.

For these settings and a step size h = 1/50 Fig. 5.1 shows the analytical and discrete
dispersion relations. Analogously to the two-band k·p-model in Chap. 4, the discrete dispersion
relation is 2π

h -periodic. But note that in contrast to the discrete dispersion relation of the two-
band k · p-model using the centered FDS, the positive trunk of the discrete dispersion relation
for these particular settings is injective in [0, π/h]. Thus, there does not exist an energy window
such that we expect spurious oscillations for all admissible energies outside this window due to
the wrong choice of the discrete wave vectors, cf. Sec. 4.3.

Fig. 5.2 shows a comparison of the analytical solution and the numerical solution for a step
size h = 1/50 and an energy E = 1500. While the norms of the analytical and numerical
solutions coincide and are equivalent to one, the phases are plotted in Fig. 5.2(a) and the real
parts of the conduction bands are shown in Fig. 5.2(b). The small phase error we can observe in
both plots decreases for smaller step sizes. This is demonstrated in Fig. 5.3 where the discrete
L2-error is plotted versus the number of grid points. Recall that the discrete L2-error is the
solution of the nonlinear optimization problem

∆Fmin
h = min

ϕ∈[−π,π]
∆Fh = min

ϕ∈[−π,π]

1

J + 1

√
√
√
√

J∑

j=0

‖F(xj) − Fjeiϕ‖2, (5.47)

where F(xj) denotes the analytical solution at x = xj and Fj the numerical solution using the
step size h = 1/J . The discrete L2-error in Fig. 5.3 is clearly in O(h2) which coincides with the
formal order of the standard and centered difference operator we used in order to discretize the
general k · p-model.

5.5.2 The Single Barrier Potential

In our second example we want to analyze the numerical results of the unstrained eight-band
k ·p-model with k|| = 0 in the case of a single barrier potential. We consider a semiconductor of
length L that is split into three parts. Let 0 < x1 < x2 < L, then the three subdomains of the
semiconductor are defined by [0, x1), [x1, x2) and [x2, L]. The two outer subdomains have the
same physical properties and are denoted by A = [0, x1)∪ [x2, L], while the inner subdomain is
called B = [x1, x2).

We use the same problem as in the previous example, but in the domain B we shall set the
band edges to EB

c = 1169.33 and EB
v = −167.60, see [24]. Due to physical conventions, we shall

refer to this band edge profile as quantum well structure.
Analogously to the previous chapters, we can compute the analytical solution since the

matrices N, M are constant the matrix V is piecewise constant. Let us denote the matrix V in
the domain A by VA and in the domain B by VB. Suppose that the energy E is greater than
some lower bound Ee

0, cf. Thm. 5.1. Then the number of positive wave vectors is equal to the
number n of positive eigenvalues of N .
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(a) Analytical and discrete dispersion relations.

0 5 10 15 20 25 30 35 40

−8000

−6000

−4000

−2000

0

2000

4000

wave vector

en
er

gy

analytical dispersion relation
discrete dispersion relation
band edges

(b) Detail view of (a).

Figure 5.1: Analytical (dotted line) and discrete (solid line) dispersion relations of the unstrained
eight-band k · p-model with k|| = 0. The discrete dispersion relation is plotted for a step size
h = 1/50.



118 5. The General k · p-Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4

x

ph
as

e 
of

 th
e 

en
ve

lo
pe

 fu
nc

tio
n

analytical solution
numerical solution

(a) Phases of the analytical and numerical solutions.
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(b) Real part of the conduction band of the analytical and numerical solutions.

Figure 5.2: Comparison of the analytical solution (dotted line) and the numerical solution (solid
line) for a step size h = 1/50 and an energy E = 1500.
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Figure 5.3: L2-error of the numerical solution for an energy E = 1500.

Thus, in each domain the envelope function takes the form

F(x) =
n∑

l=1

âlF̂(k̂+
l )eik̂

+
l

x +
d−n∑

l=1

ǎlF̂(ǩ+
l )eiǩ

+
l

x +
n∑

l=1

b̂lF̂(k̂−l )eik̂
−
l

x +
d−n∑

l=1

b̌lF̂(ǩ−l )eiǩ
−
l

x,

with the coefficients âp, ǎq, b̂p, b̌q ∈ C, with p = 1, . . . , n and q = 1, . . . , d− n. Here we used the
notation of wave vectors and amplitudes we introduced in Sec. 5.2. Note that the amplitudes
are of norm 1. In the sequel we will add a subscript A or B to the amplitudes and wave vectors
in order to indicate which domain they belong to.

We consider a unitary superposition of all right-traveling envelope functions in A that enters
the semiconductor at x = 0. Again we shall multiply these n incoming envelope waves with the
coefficients ω1, . . . , ωn. At x = x1 this superposition of envelope functions is partly reflected.
On the other hand, we expect a superposition of transmitted envelope functions in the domain
[x2, L] that leaves the semiconductor at x = L. Thus, the envelope function reads

F(x) =







FA1(x) if x ∈ [0, x1),
FB(x) if x ∈ [x1, x2),
FA2(x) if x ∈ [x2, L],

(5.48)

with

FA1(x) =
n∑

l=1

ωlF̂A(k̂+
A,l)e

ik̂+
A,l

x +
n∑

l=1

r̂lF̂A(k̂−A,l)e
ik̂−

A,l
x +

d−n∑

l=1

řlF̂A(ǩ−A,l)e
iǩ−

A,l
x,

FB(x) =
n∑

l=1

âlF̂B(k̂+
B,l)e

ik̂+
B,l

x +
d−n∑

l=1

ǎlF̂B(ǩ+
B,l)e

iǩ+
B,l

x

+
n∑

l=1

b̂lF̂B(k̂−B,l)e
ik̂−

B,l
x +

d−n∑

l=1

b̌lF̂B(ǩ−B,l)e
iǩ−

B,l
x,

FA2(x) =
n∑

l=1

t̂lF̂A(k̂+
A,l)e

ik̂+
A,l

x +
d−n∑

l=1

ťlF̂A(ǩ+
A,l)e

iǩ+
A,l

x.
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We know that the solution (5.48) and its derivative are continuous, cf. [24]. In particular
they are continuous at x = x1 and x = x2. Hence, we get a system of 4d linear equations for
the 4d unknown coefficients r̂p, řq, âp, ǎq, b̂p, b̌q, t̂p, ťq ∈ C, with p = 1, . . . , n and q = 1, . . . , d−n.
We have

Qc = s,

with c, s ∈ C
4d given by

c =
(

r̂1, . . . , r̂n, ř1, . . . , řd−n, â1, . . . , ân, ǎ1, . . . , ǎd−n, b̂1, . . . , b̂n, b̌1, . . . , b̌d−n, t̂1, . . . , t̂n, ť1, . . . , ťd−n

)T

and

s =








−∑n
l=1 ωlF̂A(k̂+

A,l)e
ik̂+

A,l
x1

0

−∑n
l=1 ik̂+

A,lωlF̂A(k̂+
A,l)e

ik̂+
A,l

x1

0







,

and the coefficient matrix

Q =
(
Qr̂ Qř Qâ Qǎ Qb̂ Qb̌ Qt̂ Qť

)
∈ C

4d×4d,

with

Qr̂ =








F̂A(k̂−A,1)e
ik̂−

A,1x1 · · · F̂A(k̂−A,n)eik̂
−
A,n

x1

0 · · · 0

ik̂−A,1F̂A(k̂−A,1)e
ik̂−

A,1x1 · · · ik̂−A,nF̂A(k̂−A,n)eik̂
−
A,n

x1

0 · · · 0








∈ C
4d×n,

Qř =








F̂A(ǩ−A,1)e
iǩ−

A,1x1 · · · F̂A(ǩ−A,d−n)eiǩ
−
A,d−n

x1

0 · · · 0

iǩ−A,1F̂A(ǩ−A,1)e
iǩ−

A,1x1 · · · iǩ−A,d−nF̂A(ǩ−A,d−n)eiǩ
−
A,d−n

x1

0 · · · 0








∈ C
4d×(d−n),

Qâ =










−F̂B(k̂+
B,1)e

ik̂+
B,1x1 · · · −F̂B(k̂+

B,n)eik̂
+
B,n

x1

F̂B(k̂+
B,1)e

ik̂+
B,1x2 · · · F̂B(k̂+

B,n)eik̂
+
B,n

x2

−ik̂+
B,1F̂B(k̂+

B,1)e
ik̂+

B,1x1 · · · −ik̂+
B,nF̂B(k̂+

B,n)eik̂
+
B,n

x1

ik̂+
B,1F̂B(k̂+

B,1)e
ik̂+

B,1x2 · · · ik̂+
B,nF̂B(k̂+

B,n)eik̂
+
B,n

x2










∈ C
4d×n,

Qǎ =










−F̂B(ǩ+
B,1)e

iǩ+
B,1x1 · · · −F̂B(ǩ+

B,d−n)eiǩ
+
B,d−n

x1

F̂B(ǩ+
B,1)e

iǩ+
B,1x2 · · · F̂B(ǩ+

B,d−n)eiǩ
+
B,d−n

x2

−iǩ+
B,1F̂B(ǩ+

B,1)e
iǩ+

B,1x1 · · · −iǩ+
B,d−nF̂B(ǩ+

B,d−n)eiǩ
+
B,d−n

x1

iǩ+
B,1F̂B(ǩ+

B,1)e
iǩ+

B,1x2 · · · iǩ+
B,d−nF̂B(ǩ+

B,d−n)eiǩ
+
B,d−n

x2










∈ C
4d×(d−n),

Qb̂ =










−F̂B(k̂−B,1)e
ik̂−

B,1x1 · · · −F̂B(k̂−B,n)eik̂
−
B,n

x1

F̂B(k̂−B,1)e
ik̂−

B,1x2 · · · F̂B(k̂−B,n)eik̂
−
B,n

x2

−ik̂−B,1F̂B(k̂−B,1)e
ik̂−

B,1x1 · · · −ik̂−B,nF̂B(k̂−B,n)eik̂
−
B,n

x1

ik̂−B,1F̂B(k̂−B,1)e
ik̂−

B,1x2 · · · ik̂−B,nF̂B(k̂−B,n)eik̂
−
B,n

x2










∈ C
4d×n,
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Qb̌ =










−F̂B(ǩ−B,1)e
iǩ−

B,1x1 · · · −F̂B(ǩ−B,d−n)eiǩ
−
B,d−n

x1

F̂B(ǩ−B,1)e
iǩ−

B,1x2 · · · F̂B(ǩ−B,d−n)eiǩ
−
B,d−n

x2

−iǩ−B,1F̂B(ǩ−B,1)e
iǩ−

B,1x1 · · · −iǩ−B,d−nF̂B(ǩ−B,d−n)eiǩ
−
B,d−n

x1

iǩ−B,1F̂B(ǩ−B,1)e
iǩ−

B,1x2 · · · iǩ−B,d−nF̂B(ǩ−B,d−n)eiǩ
−
B,d−n

x2










∈ C
4d×(d−n),

Qt̂ =








0 · · · 0

F̂A(k̂+
A,1)e

ik̂+
A,1x2 · · · F̂A(k̂+

A,n)eik̂
+
A,n

x2

0 · · · 0

ik̂+
A,1F̂A(k̂+

A,1)e
ik̂+

A,1x2 · · · ik̂+
A,nF̂A(k̂+

A,n)eik̂
+
A,n

x2








∈ C
4d×n,

Qť =








0 · · · 0

−F̂A(ǩ+
A,1)e

iǩ+
A,1x2 · · · −F̂A(ǩ+

A,d−n)eiǩ
+
A,d−n

x2

0 · · · 0

−iǩ+
A,1F̂A(ǩ+

A,1)e
iǩ+

A,1x2 · · · −iǩ+
A,d−nF̂A(ǩ+

A,d−n)eiǩ
+
A,d−n

x2








∈ C
4d×(d−n).

Analogously to the single barrier problems in the previous chapters, we do not prove math-
ematically that the matrix Q is regular. Instead we shall again point out that a singular matrix
Q implies that the homogeneous case of the system of linear equations has a nonzero solution.
Thus, there can exist envelope waves inside the computational domain without the existence of
an incoming envelope wave which is a physical contradiction. We note that in our particular
example the matrix Q is in fact regular and hence, the unknown coefficients r̂p, řq, âp, ǎq, b̂p,
b̌q, t̂p, ťq, with p = 1, . . . , n and q = 1, . . . , d− n are defined uniquely.

5.5.2.1 Numerical Solutions of the Envelope Functions

In this section we compare the analytical and numerical solutions of the quantum well structure.
Fig. 5.4 shows the norms and phases of the analytical and numerical solutions as well as a
schematic view of the band edge profile.

As expected, we do not observe any spurious oscillations. Fig. 5.1(b) illustrates that for the
chosen energy E = 1500 there exists a unique positive discrete wave vector in [0, π/h]. However,
we observe a small phase error. This error decreases for smaller step sizes.

5.5.2.2 The Transmission Coefficient

Now we examine the transmission coefficient of the quantum well structure introduced above.
In Fig. 5.5 the analytical and numerical transmission coefficients are plotted against the energy
E. As before, the step size h = 1/150 is used. Since the curve of the numerical transmission
coefficient coincides with the curve of the analytical transmission coefficient for the used level
of detail in Fig. 5.5(a), only the analytical transmission coefficient is plotted. We observe that
the qualitative behavior of the transmission coefficient of this particular quantum well structure
is similar to the behavior of the transmission coefficient of the single barrier examples in the
previous chapters. Note that the first resonance is located at E ≈ 1856.

5.5.2.3 The L2-Error

Finally, we want to investigate the discrete L2-error of the numerical scheme. Recall that we
have to solve the optimization problem (5.47). Fig. 5.6 shows the discrete L2-error of the
numerical scheme applied to the quantum well structure. In the free scattering state example
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(a) Norm of the analytical and numerical solutions.
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(b) Phases of the analytical and numerical solutions.

Figure 5.4: Comparison of the analytical solution (black) and the numerical solution (red) of
the quantum well structure for a step size h = 1/150, an energy E = 1500. The dotted line
indicates schematically the band end profile.
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(b) Analytical (dotted line) and numerical (solid line) transmission coefficients near the first resonance at
E ≈ 1856.

Figure 5.5: Analytical and numerical transmission coefficients of the quantum well structure
for a step size h = 1/150.
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Figure 5.6: L2-error of the numerical solution of the quantum well structure for an energy
E = 1500.

the L2-error decayed like O(h2), which confirmed the formal order of the numerical scheme. In
the quantum well example, however, the numerical scheme turns out be of order one only. This
observation corresponds to the discrete L2-error of the two-band k · p-model in the previous
chapter. We showed that any numerical scheme only converges in O(h) if the band edges are
not continuous.

5.6 Summary

We introduced the general d-band k · p-model and analyzed the exterior problem. Numerical
evidence showed that the wave vectors of the general k · p-model can be split into real and
complex-valued wave vectors, while the number of positive wave vectors is equal to the number
of negative wave vectors and the number of wave vectors with positive imaginary part is equal
to the number of wave vectors with negative imaginary part. A general proof of this splitting
theorem has not been found and is subject to future work. With the help of the splitting
theorem we derived the TBCs of the general k · p-model.

We used the the standard and centered FDS to transform the continuous problem into a
problem on the discrete level. After analyzing the discrete exterior problem and stating the
discrete analogon of the splitting theorem, we developed the DTBCs of the general k ·p-model.

A physically realistic example of an eight-band unstrained k·p-model with k|| was presented.
The numerical results were compared with the analytical solutions of the free scattering state
and a quantum well structure. It turned out that the numerical scheme when applied to an
example with discontinuous band edges is at most of order one.



Chapter 6

Conclusions and Perspectives

We derived DTBCs for stationary multiband effective mass approximations. To do this, we
first solved the continuous exterior problem and derived elementary solutions in the exterior
domains and defined the TBCs. After discretizing the underlaying BVP and solving the discrete
exterior problem, we used the discrete elementary solutions in the exterior domains to derive
DTBCs. This fully discrete approach results in reflection-free boundary conditions, while an
ad-hoc discretization of the TBCs leads to spurious oscillations of the numerical solution. We
tested the numerical schemes and the DTBCs in examples for which an analytical solution can
be derived, i.e. for semiconductor nanostructures with piecewise constant band edges.

We extended the study of DTBCs for the scalar Schrödinger equation, i.e. the single-band
effective mass approximation, by advanced FDSs, such as the Numerov FDS and the Mickens
FDS. We showed the existence and uniqueness of the numerical solutions of the introduced
FDSs and their respective DTBCs.

The two-band Kane-model and the two-band k · p-model with inter-band coupling were in-
troduced as particular examples of multiband effective mass approximations. The discretization
of the Kane-model with the help of the centered FDS led to spurious oscillations when applied
to non-constant band edges due to a non-injective discrete dispersion relation. We introduced
the so-called symmetrized FDS that prevents this error and gives reasonable results for the
two-band Kane-model. For the two-band k · p-model, which is basically the Kane-model with
added Laplace-operator, we showed the existence of a so-called energy window of the centered
FDS. For all energies inside this window the centered FDS does not yield spurious oscillations
as observed for the Kane-model. We showed that the discrete L2-error of the combined stan-
dard and centered FDS, that is formally of order two, decays at most like O(h) when applied
to discontinuous band edges. Therefore, it implies no numerical advantage compared to the
combined standard and symmetrized FDS which is formally and numerically of order one.

Finally, we introduced the general d-band k ·p-model. The analysis of the exterior problem
gave rise to a splitting theorem that was confirmed numerically. A mathematical proof of the
general case of the splitting theorem and its discrete analogon has not been found and will be a
topic of future research. We developed the TBCs and the DTBCs of the general k ·p-model and
pointed out that they depend on the choice of the elementary solutions in the exterior domain.
Since there might exist more than one right-traveling solution in the left exterior domain we
have to define coefficients that weight the incoming envelope waves.

The numerical solutions of all multiband examples we examined were unique. However,
a general proof of the existence and uniqueness of the analytical and numerical solutions of
multiband models needs to be investigated. Note that a general proof of the existence and
uniqueness of the analytical solution of the Kane-model is presented.

Another topic of future research is the comparison of the introduced methods to solve
multiband effective mass approximations numerically with other methods, such as the transfer
matrix method, [36] and [37], as well as the R-matrix method, [42]. In particular, a comparison
of these methods is of interest when the analytical solution cannot be derived, such as a quantum

125
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barrier structure with added bias.
Simulations of quantum cascade lasers are currently an extensively discussed topic, [10].

The current density and the optical gain of quantum cascade lasers can be computed when the
envelope functions are known. Based on the DTBCs for multiband effective mass approxima-
tions, developed in this thesis, we plan to perform a fully discrete analysis of these simulations
compared to the approach in [32], where an ad-hoc discretization of the TBCs was used.



Chapter A

Appendix

A.1 Proof that the weak formulation of the two-band k·p-Model

can be written in terms of a coercive, sesquilinear and anti-

linear form

Before we start to show that the weak formulation of the two-band k ·p-Model can be expressed
in terms of a coercive, sesquilinear and anti-linear form, we note that the vector F of the envelope
functions is in the space

(
L2(0, L)

)2
with the scalar product

〈F,G〉 =

∫ 1

0
F(x) · G(x)dx, F,G ∈

(
L2(0, L)

)2
,

where the product F(x) · G(x) is the standard Hermitian scalar product on C
2 given by

F(x) · G(x) = Fc(x)Gc(x) + Fv(x)Gv(x).

The two-band k · p-model with inter-band coupling reads

HF = EF, (A.1)

with

H =

(

−ǫ d2

dx2 + Ec(x) −iP0(x)
d
dx

−iP0(x)
d
dx ǫ d2

dx2 + Ec(x) − Eg(x)

)

,

cf. Eq. (4.3). In the sequel we will assume that P0 is constant.

We multiply Eq. (A.1) by an arbitrary function G ∈
(
L2(0, L)

)2
and integrate over (0, L)

to get

∫ L

0
EF(x) · G(x)dx =

∫ L

0
ǫ

(
−1 0
0 1

)
d2

dx2
F(x) · G(x)dx

− iP0

∫ L

0

(
0 1
1 0

)
d

dx
F(x) · G(x)dx

+

∫ L

0

(
−Ec(x) 0

0 Ec(x) − Eg(x)

)

F(x) · G(x)dx.
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Integrating by parts gives

0 =ǫ

∫ L

0

d

dx
Fc(x)

d

dx
Gc(x)dx− ǫ

d

dx
Fc(L)Gc(L) + ǫ

d

dx
Fc(0)Gc(0)

− ǫ

∫ L

0

d

dx
Fv(x)

d

dx
Gv(x)dx+ ǫ

d

dx
Fv(L)Gv(L) − ǫ

d

dx
Fv(0)Gv(0)

− iP0

(∫ L

0

d

dx
Fv(x)Gc(x) + Fc(x)

d

dx
Gv(x)dx+ Fc(L)Gv(L) − Fc(0)Gv(0)

)

+

∫ L

0
F(x) · G(x)dx+

∫ L

0
(Ec(x) − E − 1)F(x) · G(x)dx−

∫ L

0
Eg(x)Fc(x)Gc(x)dx.

(A.2)

Let us introduce

D =

(
1 0
0 −1

)

.

Then we find that

ǫ
d

dx
Fc(0)Gc(0) − ǫ

d

dx
Fv(0)Gv(0) = ǫD

d

dx
F(0) · G(0)

and

−ǫ d

dx
Fc(L)Gc(L) + ǫ

d

dx
Fv(L)Gv(L) = −ǫD d

dx
F(L) · G(L).

Now we can apply the TBCs (4.34) and (4.37) to Eq. (A.2) and obtain

C(F,G) + S(F,G) = A(G), (A.3)

with the coercive and sesquilinear form

C(F,G) =

∫ L

0
F(x) · G(x)dx,

the sesquilinear form

S(F,G) =ǫ

∫ L

0

d

dx
Fc(x)

d

dx
Gc(x)dx− ǫ

∫ L

0

d

dx
Fv(x)

d

dx
Gv(x)dx

+ ǫDP0K0P
−1
0 F(0) · G(0) − ǫDPLKLP−1

L F(L) · G(L)

− iP0

(∫ L

0

d

dx
Fv(x)Gc(x) + Fc(x)

d

dx
Gv(x)dx+ Fc(L)Gv(L) − Fc(0)Gv(0)

)

+

∫ L

0
(Ec(x) − E − 1)F(x) · G(x)dx−

∫ L

0
Eg(x)Fc(x)Gc(x)dx,

and the anti-linear form

A(G) = −ǫD
(

ik̂1− P0K0P
−1
0

)

F̂
e/h
0 (k̂0) · G(0).

According to the Riesz representation theorem, there exist compact operators RC and RS

such that
C(F,G) = 〈RCF,G〉 ,

and
S(F,G) = 〈RSF,G〉 .

Moreover, there exists a function aL such that

A(G) = 〈aL,G〉 .
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Then we can rewrite Eq. (A.3) in the form

(RC +RS)F = aL.

By applying the Fredholm alternative we can show that this expression has a unique solution
if RC +RS is injective. This is equivalent to show that the solution of

(RC +RS)F = 0

is identically to zero. To do this, we set the G = F and take the imaginary part of Eq. (A.3).
By considering the identity

−iP0

∫ L

0

d

dx
Fv(x)Fc(x) + Fc(x)

d

dx
Fv(x)dx = 2P0

∫ L

0
Im

(
d

dx
Fv(x)Fc(x)

)

dx ∈ R,

we obtain

0 = Im
(
ǫDP0K0P

−1
0 F(0) · F(0) − ǫDPLKLP−1

L F(L) · F(L)
)

− P0 Re
(
Fc(L)Fv(L) − Fc(0)Fv(0)

)
,

which implies

0 = Re
(
−iǫDP0K0P

−1
0 F(0) · F(0) + iǫDPLKLP−1

L F(L) · F(L)

+ P0 Re (AF(0) · F(0) − AF(L) · F(L))) ,

where A is given by

A =

(
0 0
1 0

)

.

Let us introduce

T0 = iPT
0 DP0K0 − P0P

T
0 AP0

and

TL = iPT
LDPLKL − PLPT

LAPL.

Then we end up with the equation

0 = Re
(
TLP−1

L F(L) · P−1
L F(L) − T0P

−1
0 F(0) · P−1

0 F(0)
)
. (A.4)

In order to finish the proof and show the uniqueness of the solution one has to find a negative
definite matrix S0 and a positive definite matrix SL such that Eq. (A.4) can be written in the
form

0 = SLP−1
L F(L) · P−1

L F(L) − S0P
−1
0 F(0) · P−1

0 F(0).

This implies that F(0) = F(L) = 0 and hence, by applying the homogeneous TBCs we get
d
dxF(0) = d

dxF(L)0. Considering the Cauchy-Lipschitz theorem we showed that F vanishes
everywhere.

Thus, it will be future work to investigate the existence of the matrices S0 and SL.

A.2 Proof of Thm. 5.1 for M = 0 and V diagonal

Before we start to prove Thm. 5.1 for M = 0 and V diagonal we show
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Proposition A.1. Let P ∈ C
n×n be regular with the real eigenvalues p1, . . . , pn ∈ R. Then

the matrix

Q =

(
0 1

P 0

)

∈ C
2n×2n

is regular and its eigenvalues q1, . . . , q2n ∈ C take the form

q2m−1 =
√
pm, q2m = −√

pm,

with m = 1, . . . , n.

Proof. According to [39], the determinant of the block matrix

A =

(
A1 A3

A2 A4

)

reads
detA = det (A1A4 − A2A3) .

Hence, the characteristic polynomial of Q can be written in the form

0 = det

(
−q1 1

P −q1

)

= det
(
q21− P

)
= −det

(
P − q21

)
.

This implies that all eigenvalues q of Q satisfy

q2 = p,

with some eigenvalue p of P. Thus, the 2n eigenvalues of Q read

q2m−1 =
√
pm, q2m = −√

pm,

with m = 1, . . . , n.

If M = 0 and V = diag (v1, . . . , vd) the matrix A−1B reduces to

A−1B =

(
0 1

N−1 (V − E1) 0

)

.

Since N and V are diagonal the eigenvalues of N−1 (V − E1) are

νm =
vm − E

nm
,

with m = 1, . . . , d. Then the eigenvalues of A−1B take the form

α2m−1 =
√
νm =

√

vm − E

nm
, α2m = −√

νm = −
√

vm − E

nm
,

with m = 1, . . . , n, cf. Prop. A.1. If E > Ee
0 = max {v1, . . . , vd}, then

sign νm = − signnm,

for m = 1, . . . , d. Hence, the number n of positive eigenvalues of N is equal to the number
of complex conjugate pairs of eigenvalues of A−1B while the number of real eigenvalues is
2 (d− n), with d− n being positive and d− n being negative.

On the other hand, if E < Eh
0 = min {v1, . . . , vd}, then

sign νm = signnm,

for m = 1, . . . , d. Thus, the number d− n of negative eigenvalues of N is equal to the number
of complex conjugate pairs of eigenvalues of A−1B while the number of real eigenvalues is 2n,
with n being positive and n being negative.

This finishes the proof of Thm. 5.1 for the case that M = 0 and V is diagonal.
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[36] R. Pérez-Alvarez and H. Rodriguez-Coppola, Transfer matrix in 1D Schrödinger problems

with constant and position-dependent mass, Phys. Stat. Sol. (b) 145 (1988), 493–500.
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