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Abstract

Nonlinear Black–Scholes equations have been increasingly attracting interest over
the last two decades, since they provide more accurate values by taking into account
more realistic assumptions, such as transaction costs, risks from an unprotected
portfolio, large investor’s preferences or illiquid markets, which may have an impact
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In this paper we will be concerned with several models from the most relevant class
of nonlinear Black–Scholes equations for European and American options with a
volatility depending on different factors, such as the stock price, the time, the op-
tion price and its derivatives due to transaction costs. We will analytically approach
the option price by transforming the problem for a European Call option into a
convection-diffusion equation with a nonlinear term and the free boundary prob-
lem for an American Call option into a fully nonlinear nonlocal parabolic equation
defined on a fixed domain following Ševčovič’s idea. Finally, we will present the re-
sults of different numerical discretization schemes for European options for various
volatility models including the Leland model, the Barles and Soner model and the
Risk adjusted pricing methodology model.
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1 Introduction

The interest in pricing financial derivatives - among them in pricing options -
arises from the fact that financial derivatives can be used to minimize losses
caused by price fluctuations of the underlying assets. This process of protection
is called hedging. There is a variety of financial products on the market, such
as futures, forwards, swaps and options. In this paper we will concentrate on
European and American Call and Put options.
We recall that a European Call option is a contract where at a prescribed time
in the future, known as the expiry date T , the owner of the option, known as
the holder, may purchase a prescribed asset, known as the underlying asset
S(t), for a prescribed amount, known as the exercise or strike price K. The
opposite party, or the writer, has the obligation to sell the asset if the holder
chooses to excercise his right. Therefore, the value of the option at expiry,
known as the pay-off function, is V (S, T ) = (S−K)+. Reciprocally, a European
Put option is the right to sell the asset with the pay-off function V (S, T ) =
(K − S)+ (see e.g. [1]). While European options can only be exercised in T ,
American options can be exercised at any time until the expiration, which
complicates their pricing process significantly.
Option pricing theory has made a great leap forward since the development of
the Black-Scholes option pricing model by Fischer Black and Myron Scholes
in [2] in 1973 and previously by Robert Merton in [3]. The solution of the
famous (linear) Black-Scholes equation

0 = Vt +
1

2
σ2S2VSS + rSVS − rV, (1)

where S := S(t) > 0 and t ∈ (0, T ), provides both the price for a European
option and a hedging portfolio that replicates the option assuming that (see
[4]):

• The price of the asset price or underlying derivative S(t) follows a Geometric
Brownian motion W (t), meaning that S satisfies the following stochastic
differential equation (SDE):

dS(t) = µS(t)dt + σS(t)dW (t).

• The trend or drift µ (measures the average rate of growth of the asset price),
the volatility σ (measures the standard deviation of the returns) and the
riskless interest rate r are constant for 0 ≤ t ≤ T and no dividends are paid
in that time period.

• The market is frictionless, thus there are no transaction costs (fees or taxes),
the interest rates for borrowing and lending money are equal, all parties
have immediate access to any information, and all securities and credits
are available at any time and any size. That is, all variables are perfectly
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divisible and may take any real number. Moreover, individual trading will
not influence the price.

• There are no arbitrage opportunities, meaning that there are no opportuni-
ties of instantly making a risk-free profit.

Under these assumptions the market is complete, which means that any asset
can be replicated with a portfolio of other assets in the market (see [5]).
Then, the linear Black–Scholes equation (1) can be transformed into the heat
equation and analytically solved to price the option [1].
It is easily imaginable that these restrictive assumptions never occur in reality.
Due to transaction costs (see [6–8]), large investor preferences (see [9–11]) and
incomplete markets [12] they are likely to become unrealistic and the classical
model results in strongly or fully nonlinear, possibly degenerate, parabolic
diffusion-convection equations, where both the volatility σ and the drift µ can
depend on the time t, the stock price S or the derivatives of the option price V
itself. In this paper we will be concerned with several transaction cost models
from the most relevant class of nonlinear Black–Scholes equations for European
and American options with a constant drift µ and a nonconstant volatility
σ̃2 := σ̃2(t, S, VS, VSS). Under these circumstances (1) becomes the following
nonlinear Black-Scholes equation, which we will consider for European options:

0 = Vt +
1

2
σ̃2(t, S, VS , VSS)S2VSS + rSVS − rV, (2)

where S > 0 and t ∈ (0, T ).
Studying (1) for an American Call option would be redundant, since the value
of an American Call option equals the value of a European Call option if no
dividends are paid and the volatility is constant (for details see [13]). In order
to make the model more realistic, we will consider a modification of (2) for
American options, where S pays out a dividend qSdt in a time step dt:

0 = Vt +
1

2
σ̃2(t, S, VS, VSS)S2VSS + (r − q)SVS − rV, (3)

where S > 0, t ∈ (0, T ) and the dividend yield q is constant.

2 Volatility Models with Transaction Costs

The Black–Scholes model requires a continuous portfolio adjustment in order
to hedge the position without any risk. In the presence of transaction costs it is
likely that this adjustment easily becomes expensive, since an infinite number
of transactions is needed [14]. Thus, the hedger needs to find the balance
between the transaction costs that are required to rebalance the portfolio and
the implied costs of hedging errors. As a result to this ”imperfect” hedging,
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the option might be over- or underpriced up to the extent where the riskless
profit obtained by the arbitrageur is offset by the transaction costs, so that
there is no single equilibrium price but a range of feasible prices. It has been
shown that in a market with transaction costs there is no replicating portfolio
for the European Call option and the portfolio is required to dominate rather
than replicate the value of the option (see [8]). Soner, Shreve and Cvitanič
prove in [15] that the minimal hedging portfolio that dominates a European
Call is the trivial one (hence holding one share of the stock that the Call is
written on), so that efforts have been made to find an alternate relaxation of
the hedging conditions to better replicate the payoffs of derivative securities.

2.1 Leland’s model

Leland’s idea of relaxing the hedging conditions is to trade at discrete times
[6], which promises to reduce the expenses of the portfolio adjustment. He
assumes that the transaction cost κ

2
|∆|S, where κ denotes the round trip

transaction cost per unit dollar of the transaction and ∆ the number of assets
bought (∆ > 0) or sold (∆ < 0) at price S, is proportional to the monetary
value of the assets bought or sold. Leland then deduces that the option price
is the solution of the nonlinear Black-Scholes equation (2) with the modified
volatility

σ̃2 = σ2

(
1 + Le sign(VSS)

)
, (4)

where σ represents the original volatility and Le the Leland number given by

Le =

√
2

π

κ

σ
√

δt
,

where δt denotes the transaction frequency (interval between successive re-
visions of the portfolio). It follows from (4) are that the more frequent the
rebalancing (δt smaller), the higher the transaction cost and the greater the
value of V .
It is known that VSS > 0 for European Puts and Calls in the absence of
transaction costs. Assuming the same behaviour in the presence of transac-
tion costs, the equation (2) becomes linear with an adjusted constant volatility
σ̃2 = σ2(1 + Le) > σ2.
Several authors (e.g. Hoggard et al. in [16], Par̈ı¿1

2
s and Avellaneda in [17])

discuss Leland’s model for general pay-off functions dropping the assumption
of the convexity of the resulting option price. From the binomial model mak-
ing use of the algorithm of Bensaid et al. (see [18]), Par̈ı¿1

2
s and Avellaneda

derive the same volatility (4) as Leland, and state that in case VSS < 0 and
Le > 1 the problem (2) becomes mathematically ill-posed and has no solution
for general pay-off functions. For the case VSS > 0 and Le > 1 they propose
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several hedging strategies.
In [7] Boyle and Vorst derive from the binomial model that as the time step
δt and the transaction cost κ tend to zero, the price of the discrete option
converges to a Black-Scholes price with the modified volatility of the form

σ̃2 = σ2

(
1 + Le

√
π

2
sign(VSS)

)
. (5)

Just like Leland, Boyle and Vorst assume convexity of V , so that σ̃2 = σ2(1 +

Le
√

π/2) and (2) turns into a linear equation.

2.2 Barles’ and Soner’s model

Barles and Soner derived a more complicated model by following the utility
function approach of Hodges and Neuberger [19], that was further developed
by Davis et al. in [20]. They use an exponential utility function and prove by
the theory of stochastic optimal control [21] that as ε and κ go to 0, V is the
unique (viscosity) solution of (2) where

σ̃2 = σ2

(
1 + Ψ(er(T−t)a2S2VSS)

)
, (6)

with a = κ/
√

ε and Ψ(x) denotes the solution to the following nonlinear
ordinary differential equation

Ψ′(x) =
Ψ(x) + 1

2
√

xΨ(x) − x
, x 6= 0, (7a)

with the initial condition
Ψ(0) = 0. (7b)

The analysis of this ordinary differential equation by Barles and Soner in [8]
implies that

lim
x→∞

Ψ(x)

x
= 1 and lim

x→−∞
Ψ(x) = −1. (8)

This property encourages to treat the function Ψ(·) as the identity for large
arguments and therefore the volatility becomes

σ̃2 = σ2(1 + er(T−t)a2S2VSS). (9)

2.3 Risk Adjusted Pricing Methodology

In this model, proposed by Kratka and improved by Jandačka and Ševčovič
in [22], the optimal time-lag δt between the transactions is found to minimize
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the sum of the rate of the transaction costs and the rate of the risk from an
unprotected portfolio. That way the portfolio is still well protected and the
modified volatility is now of the form

σ̃2 = σ2

(
1 + 3

(C2M

2π
SVSS

) 1

3

)
, (10)

where M ≥ 0 is the transaction cost measure and C ≥ 0 the risk premium
measure.

It is mentionable that these nonlinear models are all consistent with the linear
model if the additional parameters for transaction costs vanish (Le, Ψ(·), M).
We will study these models – more precisely equations (2) and (3) where the
volatility is given by the equations (4), (6), (9) and (10) – for both European
and American Call options. The European Call option is the solution to (2) on
0 ≤ S < ∞, 0 ≤ t ≤ T with the following terminal and boundary conditions:

V (S, T ) = (S − K)+ for 0 ≤ S < ∞
V (0, t) = 0 for 0 ≤ t ≤ T (11)

V (S, t) ∼ S − Ke−r(T−t) as S → ∞.

For the American Call option the ’spatial’ domain is divided into two regions
by the free boundary Sf (t), the stopping region Sf (t) < S < ∞, 0 ≤ t ≤
T , where the option is exercised or dead with V (S, t) = S − K and the
continuation region 0 ≤ S ≤ Sf(t), 0 ≤ t ≤ T , where the option stays alive
and (2) is valid under the following terminal and boundary conditions (see
e.g. [13]):

V (S, T ) = (S − K)+ for 0 ≤ S ≤ Sf (T )

V (0, t) = 0 for 0 ≤ t ≤ T

V (Sf (t), t) = Sf (t) − K for 0 ≤ t ≤ T (12)

VS(Sf (t), t) = 1 for 0 ≤ t ≤ T

Sf(T ) = max(K, rK/q).

The existence of a viscosity solution to (2) for European options with the
volatility given by (6) has been proved by Barles and Soner in [8], however an
exact analytical solution leading to a closed expression is not known neither
for European nor for American options in a market with transaction costs.
The focus of this paper is the numerical solution of the problem, which is
achieved by initially analytically approaching the solution for the European
Call by transforming (2) with (11) into a forward-in-time parabolic problem.
In the section thereafter both a classical and a compact finite difference scheme
will be specified and used to solve the transformed problem. Finally, different
volatility models will be compared to each other.
The numerical solution and the comparison study for American options will be
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closely discussed in the thesis of the first author and in this work restricted to
the transformation of the free boundary problem (3) with (12) into a parabolic
equation defined on a fixed spatial domain. This new problem will be numer-
ically solved and evaluated in [23].

3 Analytical Solution

3.1 Transformation of the European Call option

In order to be able to solve the problem (2) subject to (11) numerically, we
perform a variable transformation (see e.g. [1], [24]):

x = ln

(
S

K

)
, τ =

1

2
σ2(T − t) u(x, τ) = e−xV (S, t)

K
.

Differentiation yields:

Vt = uττtS = −1

2
σ2Suτ ,

VS = uxxSS + u = ux + u,

VSS = uxxxS + uxxS =
1

S
(uxx + ux).

Plugging these derivatives into (2) leads to

0 = −1

2
σ2Suτ +

1

2
σ̃2S(uxx + ux) + rS(ux + u) − ruS,

and a final multiplication by − 2
Sσ2 gives

0 = uτ −
σ̃2

σ2
(uxx + ux) − Dux, (13)

where D = 2r
σ2 and σ̃2 depends on the volatility model, x ∈ R and 0 ≤ τ ≤

T̃ = σ2T
2

. Model (4) becomes

σ̃2 = σ2

(
1 + Le sign(uxx + ux)

)
, (14a)

model (6)

σ̃2 = σ2

(
1 + Ψ

(
e

2rτ

σ2 a2Kex(uxx + ux)
))

, (14b)

model (9)

σ̃2 = σ2

(
1 + e

2rτ

σ2 a2Kex(uxx + ux)

)
(14c)
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and model (10)

σ̃2 = σ2

(
1 + 3

(C2M

2π
(uxx + ux)

) 1

3

)
. (14d)

Now u(x, τ) solves (13) on the transformed domain x ∈ R, 0 ≤ τ ≤ T̃ subject
to the following initial and boundary conditions resulting from (11):

u(x, 0) = (1 − e−x)+ for x ∈ R,

u(x, τ) = 0 as x → −∞, (15)

u(x, τ) ∼ 1 − e−Dτ−x as x → ∞.

3.2 Transformation of the American Call option

The purpose of converting the free-boundary problem for the nonlinear Black-
Scholes equation (3) subject to (12) into a quasilinear parabolic equation de-
fined on a fixed domain is the minimization of the error resulting from the
discontinuity of VSS, which is achieved by only considering the domain where
(3) holds. Following the idea of Ševčovič in [25] we change the variables to:

τ = T − t, x = ln

(
̺(τ)

S

)
⇔ S = e−x̺(τ), ̺(τ) = Sf(T − τ)

and construct a portfolio Π(x, τ) = V (S, t) − SVS(S, t) by buying ∆ = VS

shares S and selling an option V . Differentiating Π with respect to x and τ
gives us

Πx = VSSx − SxVS − SVSSSx = S2VSS

and

Πτ = VSSτ + Vttτ − SτVS − S(VSSSτ + VSttτ )

= −Vt −
̺′(τ)

̺(τ)
S2VSS + SVSt

= −Vt −
̺′(τ)

̺(τ)
Πx − S∂S(−Vt).

(16)

Substituting

−Vt =
σ̃2

2
S2VSS − r(V − SVS) − qSVS =

σ̃2

2
Πx − rΠ − qSVS

from (3) into (16) and using the fact that −S∂S = ∂x, we get

Πτ =
σ̃2

2
Πx − rΠ − qSVS − ̺′(τ)

̺(τ)
Πx + ∂x

(
σ̃2

2
Πx − rΠ

)
+ S∂S(qSVS)

=

(
σ̃2

2
− ̺′(τ)

̺(τ)
− r + q

)
Πx − rΠ +

1

2
∂x(σ̃

2Πx).
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We therefore obtain

0 = Πτ +

(
̺′

̺
(τ) + r − q − σ̃2

2

)
Πx −

1

2
∂x(σ

2Πx) + rΠ, (17)

defined on x ∈ R
+, 0 ≤ τ ≤ T . The terminal condition from (12) in the

original variables (S, T ) becomes the intitial condition in the new variables
(x, 0)

Π(x, 0) = V (S, T ) − SVS(S, T ) =





−K for S > K ⇔ x < ln ̺(0)
K

0 otherwise
(18a)

and the boundary conditions from (12) transform to

Π(x, τ) = 0 as x → ∞, 0 ≤ τ ≤ T (18b)

Π(0, τ) = −K for 0 ≤ τ ≤ T. (18c)

To complete the system of equations that enables the computation of the port-
folio Π we need to use the last two conditions of (12) to obtain an expression
at the free boundary position ̺(τ). Differentiating and evalutating V at the
free boundary gives us

VS(Sf (t), t)S
′

f (t) + Vt(Sf(t), t) = S ′

f(t).

Using (12), we conclude that

Vt(Sf (t), t) = 0 for 0 ≤ τ ≤ T.

Computing (3) at the point (Sf (t), t) or at (0, τ) in the transformed variables
yields:

0 = Vt(Sf (t), t) +
1

2
σ̃2Πx(0, τ) + (r − q)Sf(t)VS(Sf(t), t) − rV (Sf (t), t)

=
1

2
σ̃2Πx(0, τ) + rK − q̺(τ).

Assuming that r ≥ q for the sake of simplicity delivers the last condition:

̺(τ) =
1

2q
σ̃2Πx(0, τ) +

rK

q
with ̺(0) =

rK

q
, (18d)

where 0 ≤ τ ≤ T and σ̃2 depends on the volatility model we choose. The
volatility (4) from the Leland model becomes

σ̃2 = σ2

(
1 + Le sign(Πx)

)
, (19a)

for (6) we get
σ̃2 = σ2(1 + Ψ(erτa2Πx)), (19b)
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for (9) we obtain

σ̃2 = σ2(1 + erτa2Πx) (19c)

and for (10)

σ̃2 = σ2

(
1 + 3

(C2M

2π
Πx̺(τ)e−x

) 1

3

)
. (19d)

This transformed problem (17) subject to (18) with the corresponding volatil-
ities (19) is solved by the split step finite-difference method proposed by
Ševčovič in [25] and elaborated on in [23]. The solution in the European case
is specified below.

4 Numerical Solution

4.1 Finite-Difference Schemes

There are several numerical methods of solving (13) subject to (15). This
work’s emphasis is on the finite-difference schemes, thus other methods will
not be mentioned here.
To apply finite-difference schemes to the transformed problem (13) subject
to the conditions (15) with the corresponding volatilities (14) we start by
replacing x ∈ R and τ ∈ [0, T̃ ] by a bounded inverval x ∈ [−R,R], R > 0.
We discretize the new computational domain by a uniform grid (xi, τn) with
xi = ih and τn = nk, where h is the space step, k is the time step, i ∈ [−N,N ],
−R = −Nh, R = Nh, n ∈ [0,M ] and T̃ = Mk. We denote the approximate
solution of (13) in xi at time τn by Un

i ≈ u(xi, τn) and treat the initial and
boundary conditions (15) in the following way:

U 0
i = (1 − e−ih)+,

Un
−N = 0, (20)

Un
N = 1 − e−Dnk−Nh.

For a more appropriate treatment of the boundary conditions so-called artici-
fial boundary conditions [26] can be introduced to limit the unbounded spatial
domain of (13). We bear in mind that we say a scheme is of order (m,n) if its
truncation error is of order O(km + hn).
To discretize (13) we introduce the following notation for the forward differ-
ence quotient with the spatial step size h:

D+
h Un

i :=
Un

i+1 − Un
i

h
≈ ux(xi, τn),
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where we leave out the error term O(h). Similarly, the backward difference
quotient with respect to the spatial variable is denoted as

D−

h Un
i :=

Un
i − Un

i−1

h
≈ ux(xi, τn)

and the central difference quotient as

D0
hU

n
i :=

Un
i+1 − Un

i−1

2h
≈ ux(xi, τn).

For the second spatial derivative we introduce the standard difference quotient

D2
hU

n
i :=

Un
i+1 − 2Un

i + Un
i−1

h2
≈ uxx(xi, τn)

with the error term O(h2). Note that central differences in the time variable
are never used in practice because they always lead to bad numerical schemes,
that are inherently unstable (see [1]).
Most of the resulting schemes lead to systems of equations that can be written
in matrix form:

AnUn+1 = BnUn + d, (21)

where

Un =




Un
−N+1

...

Un
0

...

Un
N−1




∈ R
2N−1, An =




a0 a1 0 · · · 0

a−1
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . .

. . .
. . . a1

0 · · · 0 a−1 a0




∈ R
(2N−1)×(2N−1),

Bn =




b0 b1 0 · · · 0

b−1
. . . . . . . . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . b1

0 · · · 0 b−1 b0




∈ R
(2N−1)×(2N−1)

and

d =




b−1U
n
−N − a−1U

n+1
−N

0
...

0

b1U
n
N − a1U

n+1
N




∈ R
2N−1.
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The vector d can be calculated with the boundary conditions (20) and the
matrices An and Bn are triagonal, so that the resulting systems can be solved
with linear effort O(N) using the Thomas algorithm [27]. We further suppose
that

1∑

i=−1

ai =
1∑

i=−1

bi = 1,

which is satisfied by any consistent scheme after normalization of the coeffi-
cients (cf. [28]).
There are different ways of treating the volatility. Düring suggests in [29] a
smoother approximation of uxx for the nonlinear part by choosing:

uxx(xi, τn) ≈ Un
i+2 − 2Un

i + Un
i−2

4h2
:= D2

2hU
n
i

with the truncation error of O(h2). We will treat the nonlinearity explicitly in
all the schemes and denote the volatility correction for Leland’s model with
the volatility (14a) by

sn
i =

√
2

π

κ

σ
√

δt
sign

(
D2

2hU
n
i + D0

hU
n
i

)
, (22a)

the volatility correction for Barles’ and Soner’s model with the volatility (6)
by

sn
i = Ψ

(
eDτn+xia2K(D2

2hU
n
i + D0

hU
n
i )
)
, (22b)

the volatility correction in case of treating Ψ(·) as the identity with the volatil-
ity (9) by

sn
i = eDτn+xia2K

(
D2

2hU
n
i + D0

hU
n
i

)
(22c)

and the volatility correction for the Risk Adjusted Pricing Methodolody with
the volatility (10) by

sn
i = 3

(
C2M

2π
(D2

2hU
n
i + D0

hU
n
i )

) 1

3

. (22d)

An occuring problem with sn
i is the calculation at the boundary, since theo-

retically we need Un ∈ R
2N+3 to be able to calculate sn

N−1 and sn
−N+1. This

calculation involves Un
−N−1 and Un

N+1, which are outside the computational
domain. Düring states in [29] that the influence of the nonlinearity at the
boundary is not significant and can be therefore neglected for large R. We will
assume that

Un
−N−1 = 0 and Un

N+1 = 1 − e−Dnk−(N+1)h (23)

for these ghost or auxiliary values (see [30]) and hence denote

sn =
(

sn
−N+1, · · · , sn

0 , · · · , sn
N−1

)⊤

∈ R
2N−1.
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The ordinary differential equation (7) is solved with the ode45 function in
MATLAB, which is based on an explicit Runge-Kutta (4, 5) one-step solver,
the Dormand-Prince pair [31]. The values between the calculated values for
sn are obtained by a cubic spline interpolation.

−20 −15 −10 −5 0 5 10 15 20
−5

0

5

10

15

20

25

x

Ψ
(x

)

Fig. 1. Solution to (7) using ode45 (solid line) and the identity function (dotted
line)

In the following we introduce both a classical and a compact finite-difference
scheme and present the numerical results.

4.1.1 Crank-Nicolson method

This classical finite-difference scheme computes the solution better than the
forward and backward difference methods due to its superior order of (2, 2) (cf.
[4], [30]). We approximate the second spatial derivative by D2

hU
n
i and D2

hU
n+1
i

except in the nonlinear volatility term sn
i . Bringing (13) into the form of a

convection-diffusion equation with a nonlinear term

uτ = sn
i (uxx + ux) + (1 + D)ux + uxx, (24)
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where sn
i is (22) depending on the model, and replacing all the derivatives in

(24) by their corresponding finite-difference quotients we get:

D+
k Un

i + D−

k Un+1
i = sn

i

(
D2

hU
n
i + D0

hU
n
i

)
+ sn

i

(
D2

hU
n+1
i + D0

hU
n+1
i

)

+ (1 + D)
(
D0

hU
n
i + D0

hU
n+1
i

)

+ D2
hU

n
i + D2

hU
n+1
i .

(25)

This is equivalent to

Un+1
i − Un

i

k
=

sn
i

2

(
Un

i+1 − 2Un
i + Un

i−1

h2
+

Un
i+1 − Un

i−1

2h

)

+
sn

i

2

(
Un+1

i+1 − 2Un+1
i + Un+1

i−1

h2
+

Un+1
i+1 − Un+1

i−1

2h

)

+ (1 + D)
Un

i+1 − Un
i−1 + Un+1

i+1 − Un+1
i−1

4h

+
Un

i+1 − 2Un
i + Un

i−1 + Un+1
i+1 − 2Un+1

i + Un+1
i−1

2h2
.

Rearranging leads to the linear system (21) with the following coefficients:

a−1 = sn
i (− r

2
+ µ

4
) − r

2
− λµ

4
,

a0 = 1 + r(1 + sn
i ),

a1 = sn
i (− r

2
− µ

4
) − r

2
+ λµ

4
,

b−1 = sn
i ( r

2
− µ

4
) + r

2
+ λµ

4
,

b0 = 1 − r(1 + sn
i ),

b1 = sn
i ( r

2
+ µ

4
) + r

2
− λµ

4
,

where

λ = −(1 + D), α =
λh

2
, r =

k

h2
, µ =

k

h
.

The Crank-Nicolson scheme is unconditionally stable in the linear case [30].

4.1.2 Rigal Compact Schemes

In [28] Rigal develops two-level three-point finite difference schemes of order
(2, 4) that are stable and non-oscillatory and give more efficient and accurate
results than implicit fourth-order schemes. Düring follows Rigal’s ideas and
generalizes his results for a nonlinear Black–Scholes equation in [29]. A general
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two-level three-point scheme for the problem (24) can be written as:

D+
k Un

i = (1 + sn
i )

((1

2
+ A1

)
D2

hU
n
i +

(1

2
+ B1

)
D0

hU
n
i

)

+ (1 + sn
i )

((1

2
+ A2

)
D2

hU
n+1
i +

(1

2
+ B2

)
D0

hU
n+1
i

)

+ D
(1

2
+ B1

)
D0

hU
n
i + D

(1

2
+ B2

)
D0

hU
n+1
i ,

(26)

where A1, A2, B1 and B2 are real constants which should be chosen in such a
way that they eliminate the lower order terms in the truncation error. Note,
that if these constants are equal to zero, then (26) reduces to the classical
Crank-Nicolson scheme (25) of order (2, 2). If we choose

B1 = 1+4r2α2

12βr
,

B2 = −1+4r2α2

12βr
,

A1 = − 1
12kβ

(−2h2 + 6λ2k2B2 − k2λ2 − 12kβ2B2),

A2 = − 1
12kβ

(2h2 + 6λ2k2B2 + k2λ2 + 12kβ2B2),

with β := 1 + sn
i and λ := −(1 + sn

i + D), plug into the equation (26) and
rearrange the Un

i s, then our coefficients become

a−1 = −12rβ2−2β+rλ2h2+r3λ4h4+6rλhβ−λh−r2λ3h3

24β
,

a0 = 10β+12rβ2+rλ2h2+r3λ4h4

12β
,

a1 = −12rβ2
−2β+rλ2h2+r3λ4h4

−6rλhβ+λh+r2λ3h3

24β
,

b−1 = 12rβ2+2β+rλ2h2+r3λ4h4+6rλhβ+λh+r2λ3h3

24β
,

b0 = −10β+12rβ2+rλ2h2+r3λ4h4

12β
,

b1 = 12rβ2+2β+rλ2h2+r3λ4h4
−6rλhβ−λh−r2λ3h3

24β
.

This scheme is known as the R3C scheme [29]. Note that if β = 1 or sn
i = 0

this scheme reduces to the R3B scheme developed by Rigal [28], which is also
unconditionally stable and non-oscillatory in the linear case.

4.2 Comparison Study

In this part we compare the different transaction cost models to the model
without transaction costs and to each other. The influence of transaction costs
modelled by the volatilities (4), (6), (9) and (10) and computed with the
Crank-Nicolson finite-difference scheme can be seen in Figure 2. We plot the
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difference Vnonlinear(S, t)−Vlinear(S, t) between the price of the European Call
option with transaction costs and the price of the European Call without
transaction costs. As expected the numerical results indicate an economically
significant price deviation between the standard (linear) Black-Scholes model
and the nonlinear models.
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(a) Barles’ and Soner’s model (a =
0.02) vs. linear model
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(b) Ψ(x) := x chosen as the identity
(a = 0.02) vs. linear model
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(c) Leland’s model (δt = 0.01, κ =
0.05) vs. linear model
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(d) RAPM model (M = 0.01, C = 30)
vs. linear model

Fig. 2. The influence of transaction costs (linear vs. nonlinear model)

For all calculations we used the following parameters:

r = 0.1, σ = 0.2, K = 100, T = 1 (one year),

R = 1, k = 0.001 h = 0.1.

In all the models the difference is not symmetric, but decreases closer to the
expiry date. This is an expected consequence of the decreasing necessity of
portfolio adjustment and hence lower transaction costs closer to expiry. The
difference is maximal at one year to expiry at S ≈ 95, where the nonlinear
price is significantly higher than the linear price. At this point with the given
parameters Barles’ and Soner’s model provides the highest price (≈ 12.4),
followed by Leland’s model (≈ 11.9), RAPM (≈ 11.0), the identity (≈ 10.0)
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Fig. 3. Price of the European Call option

and finally the linear price (≈ 9.9) (see Figure 3).
For each volatility model and each difference scheme we compare the error
of accuracy of the above computation one year to expiry, that is at t = 0 or
τ = T̃ = Mk, and denote this ℓ2-error by

err2(Mk) =

(
h

N∑

i=−N

|u(xi, T̃ ) − UM
i |2

) 1

2

.

For the reference solution u(xi, T̃ ) we compute a solution on a very fine grid
with k = 0.001 and h = 0.01 and for UM

i the parameters as indicated above.

Linear Barles and Soner Identity Leland RAPM

err2(Mk) with CN 0.0016 0.0006 0.0031 0.0047 0.0006

err2(Mk) with R3C 0.0009 0.0009 0.0024 0.0056 0.0005

Table 1: ℓ2-error for different models and schemes

We see that in the linear case the compact R3C scheme yields better results
than the Crank-Nicolson scheme in terms of accuracy, even though the error
resulting from the Crank-Nicolson scheme is only slightly bigger (see Table 1).
Reducing the spatial step size to h = 0.001 improves the accuracy considerably,
however, it increases the computational time tremendously.
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5 Conclusions and Outlook

We have compared several transaction cost models to each other and used two
difference schemes for the numerical computation of the option prices. Both
the Crank-Nicolson and the R3C scheme provided accurate approximations
to the European Call option price. They are unconditionally stable and non-
oscillatory and excellent methods for the computation in case of European
options due to their superiority to standard difference schemes. For the future
work another two compact schemes, known as the Numerov-type (see [32], [33])
and the Crandall-Douglas scheme (see [34]), will be generalized and analyzed
for nonlinear Black-Scholes equations. For the computation of the option prices
for American options in an market with transaction costs we refer to [25] and
[23].
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[22] M. Jandačka, D. Ševčovič, On the risk-adjusted pricing-methodology-
based valuation of vanilla options and explanation of the volatility smile,
J. Appl. Math. 2005 (3) (2005) 235–258.

[23] J. Ankudinova, The numerical solution of nonlinear Black–Scholes equations,
Master’s thesis, Technische Universität Berlin, Berlin (in preparation).
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