In this thesis we start from the work of Forsyth & Vetzal and consider ....
Keywords
References:
D.P. Bertsekas,
Constrained Optimization and Lagrangian Multiplier Methods,
Academic Press, New York, 1982.
A. Borici, H.J. Luthi,
Fast solutions of complementarity formulations in American put pricing,
J. Comp. Fin. 9 (2005), 63-81.
T.F. Coleman, Y.Li, A. Verma,
A Newton method for American option pricing,
Technical Report, Cornell Theory Center, 1999.
M.A.H. Dempster, J.P. Hutton, D.G. Richards,
LP valuation of exotic American options exploiting structure,
J. Comp. Fin. 2 (1998), 61-84.
Y. d'Halluin, P.A. Forsyth, G. Labahn,
A penalty method for American options with jump diffusion processes,
Numer. Math. 97 (2004), 321-352.
P.A. Forsyth, Y. d'Halluin, G. Labahn,
A semi-Lagrangian approach for American Asian options under jump diffusion,
SIAM J. Sci. Comput. 27 (2005), 315-345.
P.A. Forsyth, K.R. Vetzal,
Quadratic convergence for valuing American options using a penalty method,
SIAM J. Sci. Comput. 23 (2002) 2095-2122.
M. Hintermüller, K. Ito, K. Kunisch.
The primal-dual active set strategy as a semismooth Newton method,
SIAM J. Optim. 13 (2002), 184-186.
Y.C. Hon,
A quasi-radial basis functions method for American options pricing,
Comput. Math. Appl. 43 (2002), 513-524.
P. Jaillet, D. Lamberton, B. Lapeyre,
Variational inequalities and the pricing of American options,
Acta Appl. Math. 21 (1990), 263-289.
T. Kärkkäinen, K. Kunisch, and P. Tarvainen.
Augmented Lagrangian active set methods for obstacle problems,
J. Optim. Theory Appl. 119 (2003), 499-533.
B. F. Nielsen, O. Skavhaug, A. Tveito,
Penalty and frontfixing methods for the numerical solution of American option problems,
J. Comp. Fin. 5 (2002), 69-97.
J.-S. Pang, J. Huang,
Pricing American Options with Transaction Costs by Complementarity Methods,
In: Quantitative Analysis in Financial Markets, World Scientific, NJ, 1999.
R. Scholz,
Numerical solution of the obstacle problem by a penalty method: Part ii, time dependent problems,
Numer. Math. 49 (1986), 255-268.
S. Wang, X.Q. Yang, K.L. Teo,
A power penalty method for a linear complementarity problem arising from American option valuation,
J. Optim. Theory Appl. 129 (2006), 227-254.
R. Zvan, P.A. Forsyth, and K.R. Vetzal,
Penalty methods for American options with stochastic volatility,
J. Comput. Appl. Math. 91 (1998), 199-218.