Machine Learning enhanced Multigrid Methods
Master's Thesis Computer Simulation in Science
Supervision
Description
In this thesis we investigate a new strategy ....
Keywords
Multigrid methods, optimized prolongation operators,
optimized restriction operators, efficiency,
trainable Multigrid solver,
relaxation step,
Galerkin coarsening
References:
- Y. Chen, Bin Dong, J. Xu,
Meta-mgnet: Meta multigrid networks for solving parameterized partial differential equations,
Journal of Computational Physics 455 (2022): 110996.
- D. Greenfeld, M. Galun, R. Kimmel, I. Yavneh, R. Basri,
Learning to Optimize Multigrid PDE Solvers,
- J. He, J. Xu,
MgNet: a unified framework of multigrid and convolutional neural network,
Science china mathematics 62.7 (2019): 1331-1354.
- R. Huang, R. Li, Y. Xi,
Learning optimal multigrid smoothers via neural networks,
United States: N. p., 2021. Web.
- A. Katrutsa T. Daulbaev, Ivan Oseledets,
Deep multigrid: learning prolongation and restriction matrices,
arxiv 2017.
- A. Katrutsa T. Daulbaev, Ivan Oseledets,
Black-box learning of multigrid parameters,
Comput. Appl. Math. 368 (2020) 112524.
- T. Louw, S. McIntosh-Smith.
Applying Recent Machine Learning Approaches to Accelerate the Algebraic Multigrid Method for Fluid Simulations,
Smoky Mountains Computational Sciences and Engineering Conference. Springer, Cham, 2021.
- I. Luz, M. Galun, H. Maron, R. Basri, I. Yavneh,
Learning Algebraic Multigrid Using Graph Neural Networks,
- S. Goswami, A. Bora, Y. Yu, G.E. Karniadakis,
Physics-Informed Deep Neural Operator Networks,
July 2022.
- N. Margenberg, R. Jendersie, T. Richter, C. Lessig,
Deep neural networks for geometric multigrid methods,
June, 2021.
- P. Suffa
Learning Optimal Prolongation and Restriction Operators for Multigrid PDE Solvers,
Masterthesis, FAU, 2021.
- A. Taghibakhshi, S. MacLachlan, L. Olson, M. West,
Optimization-Based Algebraic Multigrid Coarsening Using Reinforcement Learning,
arxiv, June 2021.
- S. Wang, H. Wang, P. Perdikaris,
Learning the solution operator of parametric partial differential equations with physics-informed DeepONets,
Science Advances 7(40) (2021).