In this thesis we consider the work of Yousuf, Khaliq and Kleefeld ...
Keywords
Exponential Time Differencing, Transaction Cost model, Butterfly Spread, Discrete
Barrier Option, Nonlinear Black-Scholes Model, Risk Adjusted Pricing Model
References:
J. Ankudinova, M. Ehrhardt,
Fixed Domain Transformations and Split-Step Finite Difference
Schemes for Nonlinear Black-Scholes Equations for American Options,
Chapter 8 in M. Ehrhardt (ed.)
Nonlinear Models in Mathematical Finance:
New Research Trends in Option Pricing, Nova Science
Publishers, Inc., Hauppauge, NY 11788, (2008), pp. 243-273.
C. Chiarella, A. Ziogas,
Evaluation of American strangles,
J. Economic Dynamics & Control 29 (2005), 31-62.
S.M. Cox, P.C. Matthews,
Exponential Time Differencing for Stiff Systems,
J. Comput. Phys. 176 (2002), 430-455.
E. Dremkova, M. Ehrhardt,
A high-order compact method for nonlinear Black-Scholes option
pricing equations of American options,
Int. J. Comput. Math. 88 (2011), 2782-2797.
B. Düring, M. Fournié, A. Jüngel,
High order compact finite difference schemes for a nonlinear Black-Scholes equation,
Int. J. Theor. Appl. Finance 6 (2003), 767-789.
P.A. Forsyth, K.R. Vetzal,
Quadratic convergence of a penalty method for valuing American options,
SIAM J. Sci. Comp. 23 (2002), 2096-2123.
P. Heider,
Numerical methods for nonlinear Black-Scholes equations,
Appl. Math. Finance 17 (2010), 59-81.
H. Imai, N. Ishimura, I. Mottate, M. Nakamura,
On the Hoggard-Whalley-Wilmott equation
for the pricing of options with transaction costs,
Asia Pacific Financial Markets 13 (2006), 315-326.
M. Jandacka, D. Ševčovič,
On the risk adjusted pricing methodology based valuation of
vanilla options and explanation of the volatility smile,
J. Appl. Math. 3 (2005), 235-258.
B. Kleefeld, A.Q.M. Khaliq, B.A. Wade,
An ETD Crank-Nicolson Method for Reaction-Diffusion Systems,
Numer. Meth. PDE 28 (2012), 1309-1335.
W. Liao, A.Q.M Khaliq,
High order compact scheme for solving nonlinear Black-Scholes equation with transaction cost,
Int. J. Comput. Math. 86 (2009), 1009-1023.
D. Ševčovič,
Transformation methods for evaluating approximations to the optimal exercise boundary
for a nonlinear Black-Scholes equation,
Canad. Appl. Math. Quarterly 15 (2007), 77-79.
M. Yousuf, A. Khaliq and B. Kleefeld,
The numerical approximation of nonlinear Black-Scholes model for exotic
path-dependent American options with transaction cost,
Int. J. Comput. Math. 89 (2012), 1239-1254.