Bergische Universität Wuppertal
Fachbereich Mathematik und Naturwissenschaften
Angewandte Mathematik - Numerische Analysis (AMNA)

People
Research
Publications
Teaching


Prof. Dr. Matthias Ehrhardt

Lecture Winter Term 2018/19:

Numerical Methods for Hyperbolic Problems
(Advanced Topic)



Outline
 
15.10.2018

Part I: Mathematical Theory

§ 0. Introduction, Examples

0.1 Hyperbolic conservation laws in 1D
  • Definition 1: hyperbolic
0.2 The derivation of conservation laws
  • Example 1: 1D gas flow in a tube

§ 1. Scalar conservation laws

1.1 Examples
  • Example 1: Linear Advection Equation
  • Example 2: Advection equation with variable coefficients
  • Example 3: (viscous) Burgers equation
1.2 shock development, weak solutions
  • Example 1: Shock development in Burgers equation
16.10.2018
1.3 The Riemann problem - shock waves - rarefaction waves
  • Riemann Problem
  • Rankine-Hugoniot jump condition
  • Example 1: Burgers equation
22.10.2018
1.4 The entropy condition
  • Entropy condition (1st version)
  • Entropy functions
  • Entropy condition (2nd version)
1.5 Summary
1.6 Further examples of scalar equations
  • Example 1: Traffic Flow Model
23.10.2018

§ 2. Linear Hyperbolic Systems

2.1 Examplee
2.2 Characteristic variables
  • Domain of dependence
  • p-characteristics
  • Simple waves
  • Example 1: wave equation
29.10.2018
2.3 Linearization of nonlinear systems
  • Example 1: 1D Euler equations of gas dynamics, sound waves
  • Example 2: isothermal Euler equations
2.4 The Riemann problem
  • Riemann problem
  • Rankine-Hugoniot jump condition for systems
2.5 The Hugoniot locus in the phase space
  • Definition 1: Phase space, Hugoniot locus
  • Example 1:
30.10.2018

§ 3. Nonlinear hyperbolic systems

3.1 Hugoniot locus, shocks
  • Riemannp roblem
  • Definition 1: Hugoniot locus
  • Hugoniot curves
  • Theorem 1:
  • Example 1: isothermal Euler equations
  • Theorem 2: (local) unique solvability of the Riemann problem
05.11.2018
3.2 The entropy condition of Lax
  • entropy condition of Lax
  • pure nonlinear field
  • Example 1: isothermal Euler equations
  • Linear degeneration
    • contact discontinuity
    • modified entropy condition
06.11.2018
3.3 Rarefaction waves, Riemann invariants
  • Example 1: isothermal Euler equations
  • Calculation of rarefaction waves (1st method)
  • General solution to the Riemann problem
    • Example 1: isothermal Euler equations
    • Theorem 1: (local) unique solvability of the entropy-fulfilling Riemann problem
  • Calculation of contact discontinuities and rarefaction waves using Riemann invariants (2nd method)
    • Definition 1: p-Riemann invariants
    • Example 1: isothermal Euler equations
12.11.2018
3.4 The Riemann problem for the full Euler equations
  • isentropic Euler equations
  • Riemann invariants
  • Solution of the Riemann problem

Part II: Numerical Methods

§ 4. Numerical methods for linear equations

13.11.2018
4.1 Error, Consistency
  • Error (function)
  • Definition 1: Convergence
    • Example 1: explicit Euler method
  • Definition 2: local discretization error, consistency (order)
    • Example 2: Lax-Friedrichs method
4.2 Stability
  • Recursion formula for the error
  • Definition 1: Stability
  • Theorem 1: Lax-Richtmyer's equivalence theorem
    • Example 1: Lax-Friedrichs method
  • Definition 2: (numerical) domain of dependence
  • CFL (Courant-Friedrichs-Levy) condition
    • Example 2: one-sided method
    • Example 3: 3-point scheme
    • Example 1: Lax-Friedrichs Procedure (continued)
19.11.2018
4.3 Calculation of discontinuous solutions
  • Example 1: ut+ux=0, methods 1./2. Order, numerical results
  • Modified equations (for 1st order methods)
    • Example 2: Lax-Friedrichs method
    • artificial diffusion
    • Example 3: Upwind method
  • Error for discontinuous data
  • Modified equations (for 2nd order methods)
    • Example 4: Lax-Wendroff method
    • Example 5: Beam Warming scheme
    • Dispersion relation
    • Phase velocity, dispersion
    • group velocity
20.11.2018

§ 5. Conservative methods for nonlinear equations

5.1 The Lax-Wendroff Theorem
  • Example 1: Example 1: Upwind method for ut+u ux=0, numerical Results
  • Definition 1: conservative, numerical flow, consistent
  • Interpretation
  • Example 2: (conservative) upwind method for ut+(u2/2)x=0
  • Example 3:Lax-Friedrichs method for ut+f(u)x=0
  • Example 4: Lax-Wendroff generalizations for ut+f(u)x=0
  • Example 5: Two-step method
    • Richtmyer-two step Lax-Wendroff method
    • MacCormack method
26.11.2018 27.11.2018
5.2 The Godunov Scheme
  • Example 1: Upwind, Lax-Friedrichs for ut+aux=0
  • Example 2: CIR (Courant-Isaacson-Rees) method
  • Godunov method
  • Calculation of the entropy solution
    • Theorem 1: Godunov method satisfies discrete entropy condition
    • Corollary 1: Limiting solution of the Godunov method is entropy solution
03.12.2018
5.3 Approximate solution of the Riemann problem
  • approximative Riemann solver
  • 2 approaches for approximate Godunov method
  • Theorem 1: Conservativity and consistency of the approximate Godunov method
  • The method of Roe
    • Definition 1: Roe matrix
    • Advantages and disadvantages of the Roe method
  • Construction of a "sonic entropy fix"
    • scalar problems
    • Example 1:
    • Example 2:
    • Systems
    • Example 3:
    • Example 4:
  • Construction of a Roe matrix
    • Example 5: Roe matrix for isothermal Euler equations
04.12.2018

§ 6. Convergence of scalar methods (nonlinear stability)

6.1 TV-Stability
  • concept of convergence
  • Definition 1: TV-Stability
  • Theorem 1: criterion for TV stability
  • Theorem 2: Convergence Theorem
6.2 Stability criteria
  • Theorem 3: TVD property of Entropy solutions
  • Definition 2: TVD (total variation diminishing) method
  • Theorem 4: monotonicity preservation property of entropy solutions
  • Definition 3: monotonicity preserving
10.12.2018 11.12.2018

§ 7. High-order methods (construction of high-resolution TVD methods)

7.1 Artificial viscosity
  • Example 1: Lax-Wendroff for ut+aux=0 with Artificial viscosity
  • Theorem 1: Linear monotonicity preserving methods have at most consistency order 1
  • Corollary 1: Stability concepts from Chapter 6.2 are equivalent for linear methods
  • solution-dependent artificial viscosity
7.2 Methods with flux limitation (flux-limiter)
  • Example 2: FL: Upwind flux, FH:Lax-Wendroff flux for ut+aux=0
  • Theorem 2: TVD methods close to extreme points not 2nd order
  • 2nd order resolution
  • Theorem 3: TVD criterion for general method with flux limitation
  • ``Superbee limiter`` of Roe
  • Flux limiter of van Leer
17.12.2018
7.3 Methods with slope limitation (slope-limiter)
  • Algorithm: reconstruction, evolution, projection
  • Theorem 4: TVD criterion for general method with slope limitation
  • Example 3: Interpretation of Lax-Wendroff for ut+aux=0
  • minmod-slope
  • Generalization for linear systems
  • Generalization for nonlinear systems
18.12.2018

§ 8. Semi-discrete Methods

07.01.2019

§ 9. Multidimensional problems

08.01.2019

Part III: Excursion

§ 10. Initial boundary value problems (IBVPs) for conservation laws

10.1 Boundary conditions for linear Systems
  • Example 1: linear System in 1D
  • Example 2: 1D Euler equations
    • sub/supersonic inflow boundary
    • Outflow extrapolation
  • Example 3: No-flux Boundary conditions in R2
  • Example 4: Absorbing Boundary conditions
  • Definition 1: strong solution
  • Theorem 1: Existence / uniqueness of strong solution of IBVP in 2D
  • Definition 2: well-posed IBVP
  • Theorem 2: ill-posed IBVP
  • Theorem 3: Necessary condition for well-posedness
  • Lemma 1: Uniform Kreiss condition
14.01.2019
10.2 Boundary Conditions for Nonlinear Scalar Equations
  • Definition 1: BV(Omega)
  • Theorem 1: Compactness in L1(Omega)
  • Lemma 1: Existence of a trace mapping
  • Theorem 2: Convergence of the viscosity solution
  • Motivation of the Boundary Conditions
  • Definition 2: Weak solution of the IBVP
  • Theorem 3: Existence / uniqueness of weak solution of IBVP
15.01.2019

§ 11. A kinetic Approach for hyperbolic Systems

21.01.2019
22.01.2019


University of Wuppertal
Faculty of Mathematics and Natural Sciences
Department of Mathematics
Applied Mathematics & Numerical Analysis Group

Last modified:   Disclaimer   ehrhardt@math.uni-wuppertal.de