Bergische Universität Wuppertal
Fachbereich Mathematik und Naturwissenschaften
Angewandte Mathematik - Numerische Analysis


Discrete Artificial Boundary Conditions for linearized compressible Navier-Stokes Equations

Masterarbeit Mathematik



In this thesis we will revisit the discrete approach of Tourrette to construct Artificial boundary conditions (ABCs) and investigate if discrete derivations are possible for other ABCs.


Artificial Boundary Conditions, discrete approach, Navier-Stokes Equations


  1. S.S. Abarbanel, A. Bayliss, and L. Lustman, Non-reflecting boundary conditions for the compressible Navier-Stokes equations, ICASE Report No. 86-9, 1986.
  2. A. Bayliss, E. Turkel, Far field boundary conditions for compressible flows, J. Comput. Phys. 48 (1982), 182.
  3. F. Boyer, P. Fabrie, Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B 7 (2007), 219-250.
  4. C.-H. Bruneau, Boundary conditions on artificial frontiers for incompressible and compressible Navier-Stokes equations, M2 AN Math. Model. Numer. Anal. 34 (2000), 303-314.
  5. S. Eriksson, J. Nordström, Exact Non-reflecting Boundary Conditions Revisited: Well-Posedness and Stability, J. Found Comput Math 17(4) (2017), 957-986.
  6. D. Givoli, Non-reflecting boundary conditions, J. Comput. Phys. 94 (1991), 1.
  7. T.M. Hagstrom, Boundary conditions at outflow for a problem with transport and diffusion, J. Comput. Phys. 69 (1987).
  8. L. Halpern, Artificial boundary conditions for the linear advection diffusion equation, Math. Comput. 46 (1986), 425-438.
  9. L. Halpern, M. Schatzman, Artificial boundary conditions for incompressible viscous flows, SIAM J. Math. Anal. 20 (1989), 308-353.
  10. L. Halpern, Artificial Boundary Conditions for Incompletely Parabolic Perturbations of Hyperbolic Systems, SIAM J. Math. Anal. 22(5) (1991), 1256-1283
  11. J.G. Heywood, R. Rannacher, S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids 22 (1996), 325-352.
  12. Yibao Li, Jung-II Choi, Yongho Choic, Junseok Kim, A simple and efficient outflow boundary condition for the incompressible Navier-Stokes equations, Engineering Applications of Computational Fluid Mechanics 11:1 (2017), 69-85
  13. T. Poinsot, S. Lele, Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys. 101 (1992), 104.
  14. D.H. Rudy, J.C. Strikwerda, A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations, J. Comput. Phys. 36 (1980), 55.
  15. R.C. Swanson, E. Turkel, Artificial dissipation and central difference schemes for the Euler and Navier-Stokes equations, AIAA paper 87-1107, in Proc. AIAA 8th Computational Fluid Dynamics Conference, 1987, p. 55.
  16. L. Tourrette, Artificial boundary conditions for the linearized compressible Navier-Stokes equations, J. Comput. Phys. 137 (1997), 1-37.
  17. L. Tourrette, Artificial boundary conditions for the linearized compressible Navier-Stokes equations. II. The Discrete Approach, J. Comput. Phys. 144 (1998), 151-179.

University of Wuppertal
Faculty of Mathematics and Natural Sciences
Department of Mathematics
Applied Mathematics & Numerical Analysis Group

Last modified:   Disclaimer