Bergische Universität Wuppertal
Fachbereich Mathematik und Naturwissenschaften
Angewandte Mathematik - Numerische Analysis

People
Research
Publications
Teaching


Vorhersage-Modelle am Beispiel des Corona-Virus COVID-19


Bachelorarbeit Mathematik



Betreuung

Kooperation


Beschreibung

Die erste Gruppe von schweren Lungenentzündungen, die die COVID-19-Epidemie auslöste, wurde im Dezember 2019 in Wuhan, China, identifiziert. Der Ausbruch stellt eine Herausforderung für die Modellierer dar, da nur wenige Daten über die frühen Wachstumsverlauf und die epidemiologischen Eigenschaften des neuartigen Coronavirus bekannt sind. Wir verwenden Vorhersage-Modelle, die bei früheren Ausbrüchen validiert wurden, um kurzfristige Vorhersagen der kumulativen Anzahl bestätigter Meldungen zu erstellen und zu bewerten.

Fragestellung

Schlüsselwörter

Vorhersagen, logistisches Wachstumsmodell, Richards-Wachstumsmodell, subepidemisches Wellenmodell.

Literatur:

  1. A. Agosto, P. Giudici, A Poisson Autoregressive Model to Understand COVID-19 Contagion Dynamics, (March 9, 2020). Available at SSRN.
  2. S. Ai, G. Zhu, F. Tian, et al., Population movement, city closure and spatial transmission of the 2019-nCoV infection in China, (2020).
  3. M. Biggerstaff, S. Cauchemez, C. Reed, M. Gambhir, L. Finelli, Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature, BMC Infect. Dis. 2014 Sep 4, 14:480.
  4. P. Boldog, T. Tekeli, Z. Vizi, et al., Risk assessment of novel coronavirus COVID-19 outbreaks outside China, J. Clin. Med. 9 (2020), 571.
  5. R. Bürger, G. Chowell, L. Lara-Díiaz, Comparative analysis of phenomenological growth models applied to epidemic outbreaks, Math. Biosci. Eng.16(5) (2019), 4250-4273.
  6. F.Casella, Can the COVID-19 epidemic be managed on the basis of daily data?, arXiv:2003.06967 [physics.soc-ph] (March 2020).
  7. C. Castillo-Chavez, C.W. Castillo-Garsow, A. Yakubu, Mathematical models of isolation and quarantine, JAMA 2003, 290, 2876-2877.
  8. T. Chen, J. Rui, Q. Wang, et al., A mathematical model for simulating the transmission of Wuhan novel coronavirus, bioRxiv 2020.
  9. Q. Chen, M. Liang, Y. Li, et al., Mental health care for medical staff in China during the COVID-19 outbreak, The Lancet Psychiatry 2020; published online Feb 18.
  10. N. Chen, M. Zhou, X. Dong, et al., Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, Lancet 395 (2020), 507-513.
  11. V.C.C. Cheng, S.C. Wong, K.K.W. To, P.L. Ho, K.Y. Yuen, Preparedness and proactive infection control measures against the emerging Wuhan coronavirus pneumonia in China, J. Hosp. Infect. 2020.
  12. Chinese National Health Commission, Reported cases of 2019-nCoV.
  13. G. Chowell, Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts Infectious Disease Modelling 2 (2017), 379-398.
  14. G. Chowell, D. Hincapie-Palacio, J. Ospina, et al., Using phenomenological models to characterize transmissibility and forecast patterns and final burden of Zika epidemics, In Public library of science (2016), 2016-05-31.
  15. G. Chowell, A. Tariq, J.M. Hyman, A novel sub-epidemic modeling framework for short-term forecasting epidemic waves, BMC Medicine 17(1) (2019), 164-164.
  16. J. Cohen, D. Normile, New SARS-like virus in China triggers alarm, Science 367 (2020), 234-235.
  17. C. Drosten, S. Günther, W. Preiser, et al., Identification of a novel coronavirus in patients with severe acute respiratory syndrome, N. Engl. J. Med. 348 (2003), 1967-1976.
  18. Z. Du, L. Wang, S. Cauchemez, et al., Risk for transportation of 2019 novel coronavirus disease from Wuhan to other cities in China, Emerg. Infect. Dis., 2020.
  19. Z. Du, L. Wang, S. Cauchemez, et al., Risk of 2019 novel coronavirus importations throughout China prior to the Wuhan quarantine (2020).
  20. S. Funk, A. Camacho, A. Kucharski, et al., Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model, Epidemics 22 (2016), 56-61.
  21. M. Gilbert, G. Pullano, F. Pinotti, et al., Preparedness and vulnerability of African countries against importations of COVID-19: A modelling study, Lancet, 2020.
  22. W. Guan, Z. Ni, Y. Hu, et al., Clinical characteristics of 2019 novel coronavirus infection in China, MedRxiv, 2020.
  23. Johns Hopkins University, 2019 novel coronavirus (nCoV) data repository, Center for systems science and engineering (2020).
  24. M.J. Keeling, P. Rohnai, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008.
  25. S. Lai, I. Bogoch, N. Ruktanonchai, et al., Assessing spread risk of Wuhan novel coronavirus within and beyond China, January-April 2020: A travel network-based modelling study, (2020).
  26. Q. Li, X. Guan, P. Wu, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, N. Engl. J. Med. (2020).
  27. J. Liu, L. Ouyang, P. Guo, et al., Epidemiological, Clinical Characteristics and Outcome of Medical Staff Infected with COVID-19 in Wuhan, China: A Retrospective Case Series Analysis, Preprint March 2020.
  28. H. Lu, C.W. Stratton, Y.W. Tang, Outbreak of pneumonia of unknown etiology in Wuhan China: The mystery and the miracle, J. Med. Virol. 2020.
  29. B. Pell, Y. Kuang, C. Viboud, G. Chowell, Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics 22 (2018), 62-70.
  30. J.M. Read, J.R.E. Bridgen, D.A.T. Cummings, A. Ho, C.P. Jewell, Novel coronavirus 2019-nCoV: Early estimation of epidemiological parameters and epidemic predictions, (2020).
  31. F. Richards, A flexible growth function for empirical use, Journal of Experimental Botany 10(2) (1959), 290-301.
  32. J. Riou, C.L. Althaus, Pattern of early human-to-human transmission of Wuhan 2019-nCoV, (2020).
  33. K. Roosa, G. Chowell, Assessing parameter identifiability in compartmental dynamic models using a computational approach: Application to infectious disease transmission models, Theoret. Biol. Med. Model. 16 (2019).
  34. K. Roosa, G. Chowell, Coronavirus incidence forecasts, (2020).
  35. K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, J.M. Hyman, P. Yan, G. Chowell, Real-time forecasts of the 2019-nCoV epidemic in China from February 5th to February 24th, 2020, Infectious Disease Modelling 5 (2020), 256-263.
  36. D.W. Shanafelt, G. Jones, M. Lima, C. Perrings, G. Chowell, Forecasting the 2001 foot-and-mouth disease epidemic in the UK, EcoHealth (2017).
  37. P.X. Song, L. Wang, Y. Zhou, J. He, B. Zhu, F. Wang, L. Tang, M. Eisenberg, An epidemiological forecast model and software assessing interventions on COVID-19 epidemic in China, medRxiv 2020.02.29.20029421. ( eSIR Software)
  38. Y. Steinbuch, China opens second new hospital for coronavirus patients New York Post (2020).
  39. C. Viboud, L. Simonsen, G. Chowell, A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks, Epidemics 15 (2016), 27-37.
  40. X.-S. Wang, J. Wu, Y. Yang, Richards model revisited: Validation by and application to infection dynamics. Journal of Theoretical Biology 313 (2012), 12-19.
  41. World Health Organization, Consensus document on the epidemiology of severe acute respiratory syndrome (SARS), (2003).
  42. World Health Organization, Novel coronavirus (2019-nCoV) situation reports, (2020).
  43. J.T. Wu, K. Leung, & G.M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study, The Lancet (2020).
  44. R. Zhang, H. Liu, F. Li, B. Zhang, Q. Liu, X. Li, et al., Transmission and epidemiological characteristics of Novel Coronavirus (2019-nCoV)-Infected Pneumonia(NCIP):preliminary evidence obtained in comparison with 2003-SARS, (2020).
  45. S. Zhao, S.S. Musa, Q. Lin, et al., Estimating the Unreported Number of Novel Coronavirus (2019-nCoV) Cases in China in the First Half of January 2020: A Data-Driven Modelling Analysis of the Early Outbreak, J. Clin. Med. 9 (2020), 388.
  46. C. Huang, Y. Wang, X. Li, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (2020), 497-506.
  47. R. Lu, X. Zhao, J. Li, et al., Genomic characterization and epidemiology of 2019 novel coronavirus: implications of virus origins and receptor binding, Lancet 395 (2020), 565-574.
  48. C. Wang, P.W. Horby, F.G. Hayden, et al., A novel coronavirus outbreak of global health concern, Lancet 395 (2020), 470-473.
  49. N. Zhu, D. Zhang, W. Wang, et al., A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med. 382 (2020), 727-733.
  50. R.J. de Groot, S.C. Baker, R.S. Baric, et al., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group, J. Virol. 87 (2013), 7790-7792.
  51. X.W. Xu, X.X. Wu, X.G. Jiang, et al., Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series, BMJ 368 (2020), m606.
  52. X. Xu, P. Chen, J. Wang, et al., Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission, Sci. China Life Sci. 63 (2020), 457-460.
  53. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team, The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China, Chin. J. Epidem. 41 (2020), 145-151.
  54. J.F.W. Chan, S. Yuan, K.H. Kok, et al., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, Lancet 395 (2020), 514-523.
  55. J.T. Wu, K. Leung, G.M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modeling study, Lancet 395 (2020), 689-697.
  56. L.T. Phan, T.V. Nguyen, Q.C. Luong, et al., Importation and human-to-human transmission of a novel coronavirus in Vietnam. N. Engl. J. Med. 382 (2020), 872-874.
  57. C. Rothe, M. Schunk, P. Sothmann, et al., Transmission of 2019-nCoV infection from an asymptomatic contact in Germany, N. Engl. J. Med. 382 (2020), 970-971.
  58. D. Wang, B. Hu, C. Hu, et al., Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China, JAMA (2020), published online Feb 7.
  59. The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC).
  60. National Health Commission of the People's Republic of China. New coronavirus pneumonia diagnosis and treatment program, (trial version 5, revised version). Feb 8, 2020.
  61. Central People's Government of the People's Republic of China. China-WHO joint investigation report for novel coronavirus pneumonia (COVID-19), Feb 29, 2020.
  62. W. Guan, Z. Ni, Y. Hu, et al., Clinical Characteristics of Coronavirus Disease 2019 in China, N. Engl. J. Med. (2020), published online Feb 28.
  63. H. Shi, X. Han, N. Jiang, et al., Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study, Lancet Infect. Dis. (2020), published online Feb 24.
  64. M.Y. Ng, E.Y.P. Lee, J. Yang, et al., Imaging profile of the COVID-19 infection: radiologic findings and literature review, Radiology: Cardiothoracic Imaging (2020), published online Feb 13.
  65. W. Kong, P.P. Agarwal, Chest imaging appearance of COVID-19 infection, Radiology: Cardiothoracic Imaging (2020), published online Feb 13.
  66. F. Pan, T. Ye, P. Sun, et al., Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia, Radiology (2020), published online Feb 13.
  67. X. Yang, Y. Yu, J. Xu, et al., Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study, Lancet Respir. Med. (2020), published online Feb 21.
  68. W. Liang, W. Guan, R. Chen, et al., Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China, Lancet Oncol. (2020), published online Feb 14.
  69. Z. Wu, J.M. McGoogan, Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention, JAMA (2020), published online Feb 24.
  70. S.W.X. Ong, Y.K. Tan, P.Y. Chia, et al., Air Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient, JAMA (2020), published online Mar 4.
  71. M. Shen,Z. Peng, Y. Xiao, L. Zhang, Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China.
  72. W. Kermack, A. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Royal Soc. London. Series A 115 (1927), 700-721.
  73. J. Read, J.R. Bridgen, D.A.T. Cummings, A. Ho, C.P. Jewell, Novel coronavirus 2019-NCOV: early estimation of epidemiological parameters and epidemic predictions, medRxiv, pages 1-11, 2020.
  74. Z.Wu and J. M. McGoogan, Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72.314 Cases From the Chinese Center for Disease Control and Prevention, JAMA, 02 2020.
  75. S. Tang, B. Tang, N.L. Bragazzi, et al., Stochastic discrete epidemic modeling of COVID-19 transmission in the Province of Shaanxi incorporating public health intervention and case importation, medRxiv, February 29, 2020.
  76. Q. Li, X. Guan, P. Wu, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, N. Engl. J. Med., (2020).
  77. B. Tang, N.L. Bragazzi, Q. Li, et al., An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov), Infect. Dis. Model. 5 (2020), 248-255.
  78. B. Tang, F. Xia, S. Tang, et al., The evolution of quarantined and suspected cases determines the final trend of the 2019-nCoV epidemics based on multi-source data analyses, Available at SSRN, 2020.
  79. B. Tang, X. Wang, Q. Li, et al., Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med. 9 (2020), 462.
  80. S. Zhao, Q. Lin, J. Ran, et al., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak, Int. J. Infect. Dis. 92 (2020), 214-217.
  81. S. Zhao, Z. Zhuang, P. Cao, et al., Quantifying the association between domestic travel and the exportation of novel coronavirus (2019-nCoV) cases from Wuhan, China in 2020: A correlational analysis, J. Travel Med., (2020).
  82. K. Sun, J. Chen, C. Viboud, Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: A population-level observational study, Lancet Digital Health, (2020).
  83. Y. Xiao, S. Tang, J. Wu, Media impact switching surface during an infectious disease outbreak, Sci. Rep. 5 (2015), 7838.
  84. H. Nishiura, Correcting the actual reproduction number: A simple method to estimate R0 from early epidemic growth data, Int. J. Environ. Res. Public Health 7 (2010), 291-302.
  85. H. Nishiura, G. Chowell, The effective reproduction number as a prelude to statistical estimation of time-dependent epidemic trends, In: Mathematical and Statistical Estimation Approaches in Epidemiology, Dordrecht: Springer, 2009, pp. 103-121.
  86. P.E. Lekone, B.F. Finkenstädt, Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study, Biometrics 62 (2006), 1170-1177.
  87. C.J. Mode, C.K. Sleeman, Stochastic Processes in Epidemiology, Singapore: World Scientific, 2000.
  88. J. Parry, China coronavirus: Cases surge as official admits human to human transmission, BMJ, 2020, 368: m236.
  89. N. Imai, I. Dorigatti, A. Cori, et al., Estimating the Potential Total Number of Novel Coronavirus Cases in Wuhan City, China, Report Imperial College (2020)
  90. L.F. White, M. Pagano, A likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic, Stat. Med. 27 (2008), 2999-3016.
  91. I.I. Bogoch, A. Watts, A. Thomas-Bachli, et al., Pneumonia of unknown etiology in Wuhan, China: Potential for international spread via commercial air travel, J. Travel Med. (2020).
  92. A.B. Gumel, S.G. Ruan, T. Day, et al., Modelling strategies for controlling SARS outbreaks, Proc. R. Soc. Lond. B. 271 (2004), 2223-2232.
  93. Q. Li, X. Guan, P. Wu, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, N. Engl. J. Med. (2020).
  94. S. Zhao, Q. Lin, J. Ran, et al., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak, Int. J. Infect. Dis. (2020).
  95. C. Rothe, M. Schunk, P. Sothmann, et al., Transmission of 2019-nCoV infection from an asymptomatic contact in Germany, N. Engl. J. Med. (2020).
  96. D.S. Hui, E.E.I. Azhar, T.A. Madani, et al., The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China, Int. J. Infect. Dis. 91 (2020), 264-266.
  97. R.M. Anderson, J.A.P. Heesterbeek, D. Klinkenberg, T.D. Hollingsworth, Comment How will country-based mitigation measures influence the course of the COVID-19 epidemic? The Lancet, March 2020.
  98. Imperial College London, MRC Centre for Global Infectious Disease Analysis, News / COVID-19-report 3: transmissibility of 2019-nCoV, 2020.
  99. C. Fraser, S. Riley, R.M. Anderson, N.M. Ferguson, Factors that make an infectious disease outbreak controllable, Proc. Natl. Acad. Sci. USA 101 (2004), 6146-6151.
  100. L. Li, J.Y. Wong, P. Wu, et al., Heterogeneity in estimates of the impact of influenza on population mortality: a systematic review, Amer. J. Epidemiol. 187 (2018), 378-388.
  101. R.M. Anderson, F. Fraser, A.C. Ghani, et al., Epidemiology, transmission dynamics and control of SARS: the 2002-2003 epidemic, Phil. Trans. Roy. Soc. Ser. B 359 (2004), 1091-1105.
  102. L. Zou, F. Ruan, M. Huang, et al., SARS-CoV-2 viral load in upper respiratory specimens of infected patients, N. Engl. J. Med. (2020), published online Feb 19.
  103. J.O. Lloyd-Smith, S.J. Schreiber, P.E. Kopp, W.M. Getz, Superspreading and the effect of individual variation on disease emergence, Nature 438 (2005), 355-359.
  104. M. Lipsitch, Will COVID-19 go away on its own in warmer weather?, Center for Communicable Disease Dynamics (CCDD) at the Harvard T.H. Chan School of Public Health. 2020.
  105. T.D. Hollingsworth, D. Klinkenberg, H. Heesterbeek, R.M. Anderson, Mitigation strategies for pandemic influenza A: balancing conflicting policy objectives, PLoS Comput. Biol. 7 (2011), e1001076.
  106. S. Cauchemez, N.M. Ferguson, C. Wachtel, et al., Closure of schools during an influenza pandemic, Lancet Infect. Dis. 9 (2009), 473-481.
  107. UK Government, Department of Health and Social Care, Coronavirus action plan, March 3, 2020.
  108. J. Hellewell, S. Abbott, A. Gimma, et al., Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts, Lancet Glob. Health (2020), published online Feb 28.
  109. M.J. Keeling, T.D. Hollingsworth, J.M. Read, The efficacy of contact tracing for the containment of the 2019 novel coronavirus (COVID-19), medRxiv 2020, published online Feb 17.
  110. J. Hilton, M.J. Keeling, Estimation of country-level basic reproductive ratios for novel Coronavirus (COVID-19) using synthetic contact matrices, Posted February 27, 2020.
  111. T. Liu, J. Hu, J. Xiao, et al., Time-varying transmission dynamics of Novel Coronavirus Pneumonia in China, Posted February 13, 2020.
  112. L. Peng, W. Yang, D. Zhang, C. Zhuge, L. Hong, Epidemic analysis of COVID-19 in China by dynamical modeling, Preprint 2020.
  113. C. Huang, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet 395 (2020), 497-506.
  114. K. Muniz-Rodriguez, et al., Epidemic doubling time of the 2019 novel coronavirus outbreak by province in mainland China, medRxiv (2020).
  115. Y. Yang, et al., Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China, medRxiv (2020).
  116. S. Zhao, et al., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-ncov) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak, bioRxiv (2020).
  117. S. Sanche, et al., The novel coronavirus, 2019-ncov, is highly contagious and more infectious than initially estimated, medRxiv (2020).
  118. H. Nishiura, N.M. Linton, A.R. Akhmetzhanov, Serial interval of novel coronavirus (2019-ncov) infections, medRxiv (2020).
  119. S. Lai, et al., Assessing spread risk of Wuhan novel coronavirus within and beyond China, January-April 2020: a travel network-based modelling study, medRxiv (2020).
  120. H. Nishiura, et al., The extent of transmission of novel coronavirus in Wuhan, China, J. Clin. Medicine 9 (2020), 330.
  121. P.M. De Salazar, R. Niehus, A. Taylor, C.O. Buckee, M. Lipsitch, Using predicted imports of 2019-ncov cases to determine locations that may not be identifying all imported cases, medRxiv (2020).
  122. H. Zhao, S. Man, B. Wang, Y. Ning, Epidemic size of novel coronavirus-infected pneumonia in the epicenter Wuhan: using data of five-countries' evacuation action, medRxiv (2020).
  123. Q. Lin, T. Hu, X.-H. Zhou, Estimating the daily trend in the size of covid-19 infected population in Wuhan, medRxiv (2020).
  124. H. Nishiura, et al., Estimation of the asymptomatic ratio of novel coronavirus (2019-ncov) infections among passengers on evacuation flights, medRxiv (2020).
  125. A.J. Kucharski, et al., Early dynamics of transmission and control of 2019-ncov: a mathematical modelling study, medRxiv (2020).
  126. M. Chinazzi, et al., The effect of travel restrictions on the spread of the 2019 novel coronavirus (2019-ncov) outbreak, medRxiv (2020).
  127. G. Jin, J. Yu, L. Han, S. Duan, The impact of traffic isolation in Wuhan on the spread of 2019-ncov, medRxiv (2020).
  128. J. Hellewell, et al., Feasibility of controlling 2019-ncov outbreaks by isolation of cases and contacts, medRxiv (2020).
  129. B. Quilty, S. Clifford, S. Flasche, R.M. Eggo, Effectiveness of airport screening at detecting travellers infected with 2019-ncov, medRxiv (2020).
  130. T. Zeng, Y. Zhang, Z. Li, X. Liu, B. Qiu, Predictions of 2019-ncov transmission ending via comprehensive methods, (2020).
  131. N.E. Huang, F. Qiao, A data driven time-dependent transmission rate for tracking an epidemic: a case study of 2019-ncov, Sci. Bull. (2020).
  132. J.M. Read, J.R. Bridgen, D.A. Cummings, A. Ho, C.P. Jewell, Novel coronavirus 2019-ncov: early estimation of epidemiological parameters and epidemic predictions, medRxiv (2020).
  133. B. Tang, et al., Estimation of the transmission risk of the 2019-ncov and its implication for public health interventions, J. Clin. Medicine 9, (2020).
  134. B. Tang, et al., An updated estimation of the risk of transmission of the novel coronavirus (2019-ncov), Infect. Dis. Model. (2020).
  135. J. Labadin, B.H. Hong, Transmission dynamics of 2019-ncov in Malaysia, medRxiv (2020).
  136. M. Shen, Z. Peng, Y. Guo, Y. Xiao, L. Zhang, Lockdown may partially halt the spread of 2019 novel coronavirus in Hubei province, China, medRxiv (2020).
  137. S.J. Clifford, et al., Interventions targeting air travellers early in the pandemic may delay local outbreaks of sars-cov-2, medRxiv (2020).
  138. H. Xiong, H. Yan, Simulating the infected population and spread trend of 2019-ncov under different policy by eir model, medRxiv (2020).
  139. X. Li, X. Zhao, Y. Sun, The lockdown of Hubei province causing different transmission dynamics of the novel coronavirus (2019-ncov) in Wuhan and Beijing, medRxiv (2020).
  140. T. Chen, et al., A mathematical model for simulating the transmission of Wuhan novel coronavirus, bioRxiv preprint (2020).
  141. Y. Chen, J. Cheng, Y. Jiang, K. Liu, A time delay dynamical model for outbreak of 2019-ncov and the parameter identification, (2020).
  142. J.-A. Cui, S. Zhao, S. Guo, Y. Bai, X. Wang, T. Chen, Global dynamics of an epidemiological model with acute and chronic HCV infections, Appl. Math. Lett. 103 (2020), 106203.
  143. S.S. Nadim, I. Ghosh, J. Chattopadhyay, Short-term predictions and prevention strategies for COVID-2019: A model based study, arXiv:2003.08150 [q-bio.PE], March 18, 2020.
  144. W.-K. Ming, J. Huang, C.J.P. Zhang, Breaking down of healthcare system: Mathematical modelling for controlling the novel coronavirus (2019-nCoV) outbreak in Wuhan, China, bioRxiv preprint (2020).
  145. M.E. El Zowalaty, J.D. Järhult, From SARS to COVID-19: A previously unknown SARS - related coronavirus (SARS-CoV-2) of pandemic potential infecting humans - Call for a One Health approach, One Health 9 (2020) 100124.
  146. M. an der Heiden, U. Buchholz, Modellierung von Beispielszenarien der SARS-CoV-2-Epidemie 2020 in Deutschland, DOI 10.25646/6571.2
  147. M.G. Pedersen, M. Meneghini, Quantifying undetected COVID-19 cases and effects of containment measures in Italy, March 2020.
  148. H. Hethcote, M. Zhien, L. Shengbing, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci. 180(1-2) (2002), 141-160.
  149. T. Zhou, Q. Liu, Z. Yang, J. Liao, K. Yang, W. Bai, et al., Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019-nCoV, J. Evid. Based Med. 13(1) (2020), 3-7.
  150. S. Zhao, Q. Lin, J. Ran, S.S. Musa, G. Yang, W. Wang, et al., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak, Int. J. Infect. Dis. 92 (2020), 214-217.
  151. Y. Liu, A.A. Gayle, A. Wilder-Smith, J. Rocklöv, The reproductive number of COVID-19 is higher compared to SARS coronavirus, J. Travel Med. (2020).
  152. A. Lai, A. Bergna, C. Acciarri, M. Galli, G. Zehender, Early phylogenetic estimate of the effective reproduction number of SARS-CoV-2, J. Med. Virology (2020).
  153. R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, et al., Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2), Science (2020).
  154. A. Remuzzi, G. Remuzzi, COVID-19 and Italy: what next?, Lancet (2020).
  155. S.M. Jung, A.R. Akhmetzhanov, K. Hayashi, N.M. Linton, Y. Yang, B. Yuan, et al., Real-Time Estimation of the Risk of Death from Novel Coronavirus (COVID-19) Infection: Inference Using Exported Cases, J. Clin. Med. 9(2) (2020).
  156. C. Rothe, M. Schunk, P. Sothmann, G. Bretzel, G. Froeschl, C. Wallrauch, et al., Transmission of 2019-nCoV infection from an asymptomatic contact in Germany, New Engl. J. Med. 382 (2020), 970-971.
  157. K. Kupferschmidt, Genome analyses help track coronavirus' moves, Science. 367 (March 2020), 1176-1177.
  158. Y. Bai, L. Yao, T. Wei, F. Tian, D.Y. Jin, L. Chen, et al., Presumed asymptomatic carrier transmission of COVID-19, Jama (2020).
  159. W. Jumpen, B. Wiwatanapataphee, Y. Wu, I. Tang, A SEIQR model for pandemic influenza and its parameter identification, Int. J. Pure Appl. Math. 52(2) (2009), 247-265.
  160. F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study, Lancet. (2020).
  161. S.A. Lauer, K.H. Grantz, Q. Bi, F.K. Jones, Q. Zheng, H.R. Meredith, et al., The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application, Ann. Intern Med. (2020).
  162. J. Yan, S. Guha, P. Hariharan, M. Myers, Modeling the Effectiveness of Respiratory Protective Devices in Reducing Influenza Outbreak, Risk Analysis 39(3) (March 2019), 647-661.
  163. V.C.C. Cheng, S.K.P. Lau, P.C.Y. Woo, K.Y. Yuen, Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection, Clin. Microbiol. Rev. 20(4) (2007), 660-694.
  164. D. Giuliani, M.M. Dickson, G. Espa, F. Santi, Modelling and predicting the spatio-temporal spread of Coronavirus disease 2019 (COVID-19) in Italy, arXiv:2003.06664 [stat.AP]
  165. L. Held, M. Höhle, M. Hofmann, A statistical framework for the analysis of multivariate infectious disease surveillance counts, Statistical Modelling, 5(3) (2005), 187-199.
  166. R.S. Kirby, E. Delmelle, J.M. Eberth, Advances in spatial epidemiology and geographic information systems, Annals of Epidemiology, 27(1) (2017), 1-9.
  167. R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, J. Shaman, Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (COVID-19), Science, 2020.
  168. X. Li, J. Zai, Q. Zhao, Q. Nie, Y. Li, B.T. Foley, A. Chaillon, Evolutionary history, potential intermediate animal host, and crossspecies analyses of SARSCoV2, J. Medical Virology, 2020.
  169. B.F. Maier, D. Brockmann, Effective containment explains sub-exponential growth in confirmed cases of recent COVID-19 outbreak in mainland China, 2020.
  170. S. Meyer, L. Held, Power-law models for infectious disease spread, The Annals of Applied Statistics, 8(3) (2014), 1612-1639.
  171. M. Paul, L. Held, Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts, Stat. in Med. 30(10) (2011), 1118-1136.
  172. C. Rothe, M. Schunk, P. Sothmann, et al., Transmission of 2019-nCoV infection from an asymptomatic contact in Germany, New Engl. J. Med. 382 (2020), 970-971.
  173. K. Sun, J. Chen, C. Viboud, Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study, The Lancet Digital Health, (2020).
  174. L. Danon, E. Brooks-Pollock, M. Bailey, M.J. Keeling, A spatial model of CoVID-19 transmission in England and Wales: early spread and peak timing, (2020).
  175. C. Gu, W. Jiang, T. Zhao, B. Zheng, Mathematical recommendations to fight against COVID-19, (2020).
  176. C. Gros, R. Valenti, K. Valenti, D. Gros, Strategies for controlling the medical and socio-economic costs of the Corona pandemic, Proceedings of the National Academy of Science (2020).
  177. A. Agosto, A. Campmas, P. Giudici, A. Renda, Monitoring Covid-19 contagion growth in Europe, Working document, No 2020/03, March 2020.
  178. S. Flaxman, S. Mishra, A. Gandy, et al., Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries, Imperial College COVID-19 Response Team, (2020).
  179. B. Ivorra, M.R. Ferrández, M. Vela-Pérez, A.M. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China, Preprint. ResearchGate (2020).
  180. M.A. Acuna-Zegarra, A. Comas-Garcia, E. Hernandez-Vargas, M. Santana-Cibrian, J.X. Velasco-Hernandez, The SARS-CoV-2 epidemic outbreak: a review of plausible scenarios of containment and mitigation for Mexico, medRxiv, 2020.
  181. A.J. Rodriguez-Morales et al., COVID-19, an Emerging Coronavirus Infection: Current Scenario and Recent Developments - An Overview, J. Pure Appl. Microbiol. 14(1) (March 2020), Article 6150.
  182. W. Bock, et al., Mitigation and herd immunity strategy for COVID-19 is likely to fail, medRxiv, March 2020.
  183. R. Schlickeiser, F. Schlickeiser, A Gaussian model for the time development of the Sars-Cov-2 corona pandemic disease. Predictions for Germany made on March 30, 2020, medRxiv, April 2020.
  184. J.W. Cross, Summary of Emergent Infectious Disease: Coronavirus COVID-19 Focus, Compiled 19 March 2020.
  185. R.Singh, R. Adhikari, Age-structured impact of social distancing on the COVID-19 epidemic in India, March 2020. (Updates)
  186. A. Chowdhury, K.M.A. Kabir, J. Tanimoto, How quarantine and social distancing policy can suppress the outbreak of novel coronavirus in developing or under poverty level countries : a mathematical and statistical analysis, Preprint April 2020.
  187. S.E. Moore, E. Okyere, Controlling the Transmission Dynamics of COVID-19, arXiv:2004.00443 [q-bio.PE], April 2020.
  188. M.S. Cibrian, J.X. Velasco-Hernandez, Report on the forecast of cumulative COVID-19 cases in Mexico, Preprint April 2020.
  189. D. Caccavo, Chinese and Italian COVID-19 outbreaks can be correctly described by a modified SIRD model, Preprint March 2020.
  190. Z. Du, X. Wang, R. Pasco, et al., COVID-19 Healthcare Demand Projections: 22 Texas Cities, Preprint March 2020
  191. S.Cao, P. Feng, P. Shi, Study on the epidemic development of corona virus disease-19 (COVID-19) in Hubei province by a modified SEIR model, Journal of Zhejiang University. Medical sciences, March 2020.
  192. M.G. Pedersen, M. Meneghini, A simple method to quantify country-specific effects of COVID-19 containment measures, medRxiv, April 2020.
  193. J. Shaman, S. Pei, Initial Simulation of SARS-CoV2 Spread and Intervention Effects in the Continental US, medRxiv, Preprint March 2020.
  194. M. Gram Pedersen, M. Meneghini, Quantifying undetected COVID-19 cases and effects of containment measures in Italy, Preprint March 2020.
  195. I. Ciufolini, A. Paolozzi, Prediction of the time evolution of the Covid-19 Pandemic in Italy by a Gauss Error Function and Monte Carlo simulations, medRxiv, Preprint March 2020.
  196. K. Prem, A.R. Cook, M. Jit, Projecting social contact matrices in 152 countries using contact surveys and demographic data, PLOS Computational Biology (September 2017).

Daten:

  1. ResearchGate, COVID-19 research community: Resources and links
  2. Coronavirus COVID-19 Global Cases by Johns Hopkins CSSE
  3. D. della Protezione Civile, Repository of COVID-19 outbreak data for Italy, 2020.
  4. Acción Matemática contra el Coronavirus, Data from Spain, (2020).
  5. Data for Germany, Tagesspiegel, (2020).
  6. coronazaehler.de.
  7. Office Fédéral de la Santé Publique, Data for Switzerland.
  8. European Centre for Disease Prevention and Control, COVID-19, 2020.
  9. E. Linton, Modeling The Spread of The Coronavirus in the United States using Python, 2020. (code)
  10. National Institute of Infectious Diseases Japan, Field Briefing: Diamond Princess COVID-19 Cases,
  11. China CDC: Tracking the Epidemic, 2020.
  12. ICIAM, Mathematics of Covid-19.
  13. Epidemic Calculator.
  14. Modeling and Control of a Campus COVID-19 Outbreak.
  15. COVID-19 Optimal Control Response.
  16. Zeitreihen
  17. OECD Data, Hospital beds
  18. DIVI-Intensivregister, Freie und belegte Behandlungskapazitäten in der Intensivmedizin (Deutschland)
  19. Viola Priesemann Group, Bayesian inference and forecast of COVID-19
  20. Marc Bevand, Calculation of the age-stratified infection fatality ratio (IFR) of COVID-19
  21. Kristan Schneider, Maths-against-Malaria / COVID19_ADE_Model
  22. Esri, COVID-19 Datenhub (Deutschland)
  23. Martin Eichner, Markus Schwehm, CovidSIM


University of Wuppertal
Faculty of Mathematics and Natural Sciences
Department of Mathematics
Applied Mathematics & Numerical Analysis Group

Last modified:   Disclaimer   ehrhardt@math.uni-wuppertal.de