Dirk Klindworth


Discrete Transparent Boundary Conditions for Multiband Effective Mass Approximations


Diplomarbeit Technomathematik, TU Berlin



Betreuer



Download


Abstract

This diploma thesis is concerned with the derivation and numerical testing of discrete transparent boundary conditions (DTBCs) for multiband effective mass approximations (MEMAs). MEMAs are used to model electronic states in semiconductor nanostructures. This thesis is focused on the stationary case and comprises MEMAs such as the scalar Schrödinger equation, as a representative of single-band effective mass approximations, the two-band Kane-model and systems of kp-Schrödinger equations.

An analysis of the continuous problem is given and transparent boundary conditions (TBCs) are introduced. The discretization of the differential equations is done with the help of finite difference schemes. A fully discrete approach is used in order to develop DTBCs that are completely reflection-free. The analytical and discrete dispersion relations are analyzed in depth and the limitations of the numerical computations are shown.

The results of earlier works on DTBCs for the scalar Schrödinger equation are extended by alternative finite difference schemes. Existence and uniqueness of the numerical solutions are shown. The introduced schemes and their corresponding DTBCs are tested on numerical examples such as the single barrier potential and the tunneling effect at the double barrier potential.

The two-band Kane-model and the two-band kp-model with inter-band coupling are introduced as particular examples of MEMAs. DTBCs for the general d-band kp-model are derived and the numerical results are tested on a quantum well nanostructure.


Zusammenfassung

Die vorliegende Diplomarbeit beschäftigt sich mit der Herleitung von diskreten transparenten Randbedingungen für Effektive-Massen-Approximationen von Multiband-Systemen. Effektive-Massen-Approximationen finden Anwendung in der Berechnung der elektrischen Zustände in Halbleitern. Der Fokus dieser Arbeit liegt dabei auf dem stationären Fall. Es werden Modelle wie die skalare Schrödinger Gleichung, das Zwei-Band Kane-Modell sowie Multiband-kp-Modelle behandelt.

Zunächst werden die Modelle auf kontinuierlicher Ebene untersucht und anschließend transparente Randbedingungen hergeleitet. Die Diskretisierung der Modelle erfolgt mit Hilfe des Finite-Differenzen-Verfahrens. Auf Grundlage der diskreten Lösungen im Außenraum werden diskrete transparente Randbedingungen hergeleitet. Dieser sogenannte diskrete Ansatz verspricht reflektionsfreie Randbindungen, während eine ad-hoc Diskretisierung der transparenten Randbedingungen zu fehlerhaften Reflektionen an den künstlichen Rändern führen kann. Die diskreten Dispersionsrelationen der verschiedenen Modelle werden mit der analytischen Dispersionrelation verglichen und es werden daran die Grenzen der numerischen Schemata aufgezeigt.

Die Ergebnisse früherer Arbeiten zu diskreten transparenten Randbedingungen für die skalare Schrödinger Gleichung werden durch alternative Finite-Differenzen-Verfahren ergänzt. Für jedes dieser Verfahren wird die Existenz und Eindeutigkeit der numerischen Lösung gezeigt. Die eingeführten skalaren Schemata werden an einer einfachen Potentialbarriere sowie am Tunneleffekt der Doppelbarriere numerisch getestet.

Das Zwei-Band Kane-Modell sowie das Zwei-Band kp-Modell mit Interband-Kopplung werden als Beispiele von Multiband-Systemen eingeführt und auf kontinuierlichem sowie diskretem Niveau untersucht. Abschließend wird das allgemeine kp-Modell mit d Bändern analysiert und die zugehörigen diskreten transparenten Randbedingungen hergeleitet. Für das Acht-Band kp-Modell wird ein physikalisch realistisches Beispiel einer Quantum-Well-Struktur behandelt und die numerischen Ergebnisse mit den analytischen verglichen.


Referenzen

  1. X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, A. Schädle,
    A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations,
    Commun. Comput. Phys. 4 (2008), 729-796.
  2. A. Arnold, M. Ehrhardt, I. Sofronov,
    Discrete Transparent Boundary Conditions for the Schrödinger Equation: Fast calculation, approximation, and stability,
    Commun. Math. Sci. 1 (2003), 501-556.
  3. A. Arnold,
    Numerically Absorbing Boundary Conditions for Quantum Evolution Equations,
    VLSI Design 6 (1998), 313-319.
  4. A. Arnold,
    Mathematical concepts of open quantum boundary conditions,
    Trans. Theory Stat. Phys. 30 (2001), 561-584.
  5. U. Bandelow, H.-Chr. Kaiser, Th. Koprucki, J. Rehberg,
    Spectral properties of kp-Schrödinger operators in one space dimension,
    Numer. Funct. Anal. Optimization 21 (2000), 379-409.
  6. M. Baro,
    One-dimensional open Schrödinger-Poisson systems,
    Ph.D. Thesis, Humboldt Universität Berlin, 2005.
  7. G. Bastard,
    Wave Mechanics Applied to Semiconductor Heterostructures,
    Hasted Press, 1988.
  8. N. Ben Abdallah, P. Degond, P. A. Markowich,
    On a one-dimensional Schrödinger-Poisson scattering model,
    ZAMP 48 (1997), 135-155.
  9. N. Ben Abdallah, F. Méhats, O. Pinaud,
    On a open transient Schrödinger-Poisson system,
    Math. Meth. Mod. in App. Sci. (M3AS) 15 (2005), 667-688.
  10. N. Ben Abdallah, O. Pinaud,
    Multiscale simulation of transport in an open quantum system: Resonances and WKB interpolation,
    J. Comput. Physics 213 (2006), 288-310.
  11. N. Ben Abdallah, J. Kefi-Ferhane,
    Mathematical Analysis of the Two-Band Schrödinger Model,
    Math. Meth. Appl. Sci. 31 (2008), 1131-1151.
  12. S. Birner, T. Kubis, P. Vogl,
    Simulation of quantum cascade lasers - optimizing laser performance,
    Photonik International 2 (2008), 60-63.
  13. F. Bloch,
    Über die Quantenmechanik der Electronen in Kristallgittern,
    Z. Physik 52 (1932), 555-600.
  14. M.G. Burt,
    The justification for applying the effective-mass approximation to microstructures,
    J. Physics. Condens. Matter 4 (1992), 6651-6690.
  15. M.G. Burt,
    Direct derivation of effective-mass equations for microstructures with atomically abrupt boundaries,
    Physical Review B 50 (1994), 7518-7525.
  16. M.G. Burt,
    Fundamentals of envelope function theory for electronic states and photonic modes in nanostructures,
    J. Physics. Condens. Matter 11 (1998), 53-83.
  17. R. Chen, Z. Xu, L. Sun,
    Finite-difference scheme to solve Schrödinger equations,
    Phys. Review E 47 (1993), 3799-3802.
  18. M. Ehrhardt,
    Discrete Artificial Boundary Conditions,
    Ph.D. Thesis, Technische Universität Berlin, 2001.
  19. M. Ehrhardt, A. Arnold,
    Discrete transparent boundary conditions for the Schrödinger equation,
    Rivista di Matematica della Universit a di Parma 6 (2001), 57-108.
  20. S.N. Elaydi,
    An Introduction to Difference Equations,
    Springer, New York, 1996, 1st ed.
  21. P. Enders, M. Woerner,
    Exact 4x4 block diagonalization of the eight-band $\kp$ Hamiltonian matrix for the tetrahedral semiconductors and its application to strained quantum wells,
    Semicond. Sci. Technol. 11 (1996), 983-988.
  22. B.A. Foreman,
    Effective-mass Hamiltonian and boundary conditions for the valence bands of semiconductor microstructures,
    Physical Review B 48 (1993), 4964-4967.
  23. G. Grawert,
    Quantenmechanik,
    Aula Verlag, Wiesbaden, 1989, 5th ed.
  24. E.O. Kane,
    Energy Band Theory,
    In W. Paul (ed.), Handbook on Semiconductors, 1, 193-217. North-Holland, Amsterdam, New York, Oxford, 1982.
  25. J. Kefi,
    Analyse mathematique et numerique de modeles quantiques pour les semiconducteurs,
    Ph.D. Thesis, Universite Toulouse III - Paul Sabatier, 2003.
  26. M.V. Kisin, B.L. Gelmont, S. Luryi,
    Boundary-condition problem in the Kane model,
    Phys. Rev. B 58 (1998), 4605-4616.
  27. Th. Koprucki,
    Zu kp-Schrödingeroperatoren,
    Ph.D. Thesis, Freie Universität Berlin, 2008.
  28. Th. Koprucki,
    Modeling of electronic states in semiconductor nanostructures,
    Talk, Leipzig-Berlin-Seminar, Technische Universität Berlin, 2008.
  29. Th. Koprucki, H.C. Kaiser, J. Fuhrmann,
    Electronic States in Semiconductor Nanostructures and Upscaling to Semi-Classical Models,
    In A. Mielke (ed.), Analysis, Modeling and Simulation of Multiscale Problems, 365-394. Springer Verlag, Heidelberg, 2006.
  30. P. Matus,
    Exact difference schemes for time-dependent problems,
    Comput. Meth. Appl. Math. 5 (2005), 422-448.
  31. R.E. Mickens,
    Difference Equations: Theory and Applications,
    Van Nostrand Reinhold, New York, 1990, 2nd ed.
  32. R.E. Mickens,
    Novel explicit finite-difference schemes for time-dependent Schrödinger equations,
    Comput. Phys. Commun. 63 (1991), 203-208.
  33. R.E. Mickens, I. Ramadhani,
    Finite-difference scheme for the numerical solution of the Schrödinger equation,
    Phys. Review A 45 (1992), 2074-2075.
  34. R.E. Mickens,
    A nonlinear nonstandard finite difference scheme for the linear time-dependent Schrödinger equation,
    J. Diff. Eq. Appl. 12 (2006), 313-320.
  35. G. Milovanovic, O. Baumgartner, H. Kosina,
    Simulation of Quantum Cascade Lasers using Robin Boundary Conditions,
    9th International Conference on Numerical Simulation of Optoelectronic Devices, Gwangju Institute of Science and Technology, 2009.
  36. C.A. Moyer,
    Numerical solution of the stationary state Schrödinger Equation using discrete transparent boundary conditions,
    Comput. Sci. Engin. 8 (2006), 32-40.
  37. C. Negulescu,
    Numerical analysis of a multiscale finite element scheme for the resolution of the stationary Schrödinger equation,
    Numerische Mathematik 108 (2008), 625-652.
  38. B.V. Numerov,
    A method of extrapolation of perturbations,
    Monthly Notices of the Royal Astronomical Society 84 (1924), 592-601.
  39. S. Odermatt, M. Luisier, B. Witzigmann,
    Bandstructure calculation using the kp-method for arbitrary potentials with open boundary conditions,
    Journal of Applied Physics 97 (2005), 046104.
  40. A. Ostrowski, H. Schneider,
    Some Theorems on the Inertia of General Matrices,
    J. Math. Anal. Appl. 4 (1962), 72-84.
  41. R. Perez-Alvarez, H. Rodriguez-Coppola,
    Transfer matrix in 1D Schrödinger problems with constant and position-dependent mass,
    Phys. Stat. Sol. (b) 145 (1988), 493-500.
  42. R. Perez-Alvarez, H. Rodriguez-Coppola V.R. Velasco, F. Garcia-Moliner,
    A study of the matching problem using transfer matrices,
    J. Phys. C: Solid State Phys. 21 (1988), 2197-2206.
  43. M.-E. Pistol,
    Boundary Conditions in the Envelope Function Approximation as Applied to Semiconductor Heterostructures: The Multi-Band Case,
    J. Phys. Soc. Jpn. 71 (2002), 1325-1331.
  44. A.V. Rodina, A.Yu. Alekseev Al.L. Efros, M. Rosen and B.K. Meyer,
    General boundary conditions for the envelope function in the multiband kp model,
    Phys. Rev. B 65 (2002), 125302.
  45. F. Schmidt, P. Deuflhard,
    Discrete Transparent Boundary Conditions for the Numerical Solution of Fresnel's Equation,
    Comput. Math. Appl. 29 (1995), 53-76.
  46. J.R. Silvester,
    Determinants of Block Matrices,
    Math. Gaz. 501 (2000), 460-467.
  47. T.E. Simos, P.S. Williams,
    On finite difference methods for the solution of the Schrödinger equation,
    Computers & Chemistry 23 (1999), 513-554.
  48. I.V. Tokatly, A.G. Tsibizov, and A.A. Gorbatsevich,
    Interface electronic states and boundary conditions for envelope functions,
    Phys. Rev. B 65 (2002), 165328.
  49. W. Walter,
    Gewöhnliche Differentialgleichungen,
    Springer, Heidelberg, 2000, 7th ed.
  50. U. Wulf, J. Kucera, P.N. Racec, E. Sigmund,
    Transport through quantum systems in the R-matrix formalism,
    Phys. Rev. 58 (1998), 16209-16220.
  51. P. Y. Yu, M. Cardona,
    Fundamentals of Semiconductors: Physics and Materials Properties,
    Springer, Heidelberg, 2005, 3rd ed.
  52. A. Zisowsky,
    Discrete Transparent Boundary Conditions for Systems of Evolution Equations,
    Ph.D. Thesis, Technische Universität Berlin, 2003.
  53. A. Zisowsky, M. Ehrhardt,
    Discrete Transparent Boundary Conditions for Parabolic Systems,
    Math. Comput. Modelling 43 (2006), 294-309.
  54. A. Zisowsky, A. Arnold, M. Ehrhardt, Th. Koprucki,
    Discrete Transparent Boundary Conditions for transient kp-Schrödinger Equations with Application to Quantum-Heterostructures,
    J. Appl. Math. Mech. (ZAMM) 85 (2005), 793-805.


mailbox ehrhardt@math.uni-wuppertal.de