Mathematical Modelling of Zika Virus Epidemics
Bachelor Thesis Mathematics
Betreuung
Kooperation
- Prof. Dr. med. H. Brunner
Description
Questions
Key Words
Zika virus, (discrete) models of epidemics, disease outbreaks, nonstandard FD methods
Literature:
- E. Addai, L. Zhang, J. Ackora-Prah, J.F. Gordon, J.K.K. Asamoah, and J.F. Essel,
Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets,
Physica A: Stat. Mech. Appl. 603 (2022), 127809.
- F.B. Agusto, S. Bewick, and W.F. Fagan,
Mathematical model of Zika virus with vertical transmission,
Infect. Dis. Model. 2(2) (2017), 244-267.
- F.B. Agusto, S. Bewick, and W.F. Fagan,
Mathematical model for Zika virus dynamics with sexual transmission route,
Ecolog. Compl. 29 (2017), 61-81.
- A. Ali, Q. Iqbal, J.K.K. Asamoah, and S. Islam,
Mathematical modeling for the transmission potential of Zika virus with optimal control strategies,
Europ. Phys. J. Plus, 137(1) (2022), 1-30.
- A. Ali, S. Islam, M.R. Khan, S. Rasheed, F.M. Allehiany, J. Baili, M.A. Khan, and H. Ahmad,
Dynamics of a fractional order Zika virus model with mutant,
Alexandria Engrg. J. 61(6) (2022), 4821-4836.
- A. Ali, F.S. Alshammari, S. Islam, M.A. Khan, and S. Ullah,
Modeling and analysis of the dynamics of novel coronavirus (COVID-19) with Caputo fractional derivative,
Results in Physics 20 (2021), 103669.
- H.M. Ali and I.G. Ameen,
Optimal control strategies of a fractional order model for Zika virus infection involving various transmissions,
Chaos, Solitons \& Fractals 146 (2021), 110864.
- E.O. Alzahrani, W. Ahmad, M.A. Khan, and S.J. Malebary,
Optimal control strategies of Zika virus model with mutant,
Commun. Nonlin. Sci. Numer. Simul. 93 (2021), 105532.
- Diego F. Aranda L., G. Gonzalez-Parra, and T. Benincasa,
Mathematical modeling and numerical simulations of Zika in Colombia considering mutation,
Math. Comput. Simul. 163 (2019), 1-18.
- R. Becker,
Animal models to study whether Zika causes birth defects,
Nat. Med. 22(3) (2016), 225-227.
- R. Begum, O. Tunç, H. Khan, H. Gulzar, and A. Khan,
A fractional order Zika virus model with Mittag-Leffler kernel,
Chaos, Solitons & Fractals 146 (2021), 110898.
- S. Berkhahn and M. Ehrhardt,
A Physics-Informed Neural Network to Model COVID-19 Infection and Hospitalization Scenarios,
accepted: Advances in Continuous and Discrete Models: Theory and Applications, 2022.
- K. Best and A.S. Perelson,
Mathematical modeling of within-host Zika virus dynamics,
Immunol. Rev. 285(1) (2018), 81-96.
- S.K. Biswas, U. Ghosh, and S. Sarkar,
Mathematical model of Zika virus dynamics with vector control and sensitivity analysis,
Infect. Dis. Model. 5 (2020), 23-41.
- E. Bonyah and K.O. Okosun,
Mathematical modeling of Zika virus,
Asian Pac. J. Trop. Dis. 6(9) (2016), 673-679.
- E. Bonyah, M.A. Khan, K.O. Okosun, and J.F. Gómez-Aguilar,
On the co-infection of dengue fever and Zika virus,
Optim. Contr. Appl. Meth. 40(3) (2019), 394-421.
- E. Bonyah, M.A. Khan, K.O. Okosun, and S. Islam,
A theoretical model for Zika virus transmission,
PloS one, 12(10) (2017), e0185540.
- J.P.T. Boorman and J.S. Porterfield,
A simple technique for infection of mosquitoes with viruses, transmission of Zika virus,
Trans. Roy. Soc. Trop. Med. Hyg. 50(3) (1956), 238-242.
- L. Bouzid and O. Belhamiti,
Effect of seasonal changes on predictive model of bovine babesiosis transmission,
Int. J. Model. Simul. Sci. Comput. 8(4) (2017), 1-17.
- F. Brauer and C. Castillo-Chávez,
Basic Ideas of Mathematical Epidemiology,
Mathematical Models in Population Biology and Epidemiology, Springer, 2001, pp. 275-337.
- Y. Cai, K. Wang, and W. Wang,
Global transmission dynamics of a Zika virus model,
Appl. Math. Lett. 92 (2019), 190-195.
- C.J. Carlson, E.R. Dougherty, and W. Getz,
An ecological assessment of the pandemic threat of Zika virus,
PLoS Negl. Trop. Dis. 10(8) (2016), e0004968.
- C. Castillo-Chávez and R.H. Thieme,
Asymptotically autonomous epidemic models,
in: Mathematical Population Dynamics: Analysis of Heterogeneity,
0. Arimo, D.E. Axelrod, and M. Kimmel (eds.),
Wuerz Publishing, Winnipeg, MB, Canada, 1995, pp. 33-50.
- S. Cauchemez, M. Besnard, P. Bompard, et al.,
Association between Zika virus and microcephaly in French Polynesia, 2013-15: a retrospective study,
Lancet 387(10033) (2016), 2125-2132.
- F.R. Cugola, I.R. Fernandes, F.B. Russo, B.C Freitas, J.L.M. Dias, K.P. Guimaraes, et al.,
The Brazilian Zika virus strain causes birth defects in experimental models,
Nature 534 (2016), 267-271.
- M. Darwish,
A seroepidemiological survey for bunyaviridae and certain other arboviruses in Pakistan,
Trans. R. Soc. Trop. Med. Hyg. 77(4) (1983), 446-450.
- G.W. Dick, S.F. Kitchen, and A.J. Haddow,
Zika virus. I. isolations and serological specificity,
Trans. R. Soc. Trop. Med. Hyg. 46(5) (1952), 509-520.
- G.W. Dick,
Zika virus. II. pathogenicity and physical properties,
Trans. R. Soc. Trop. Med. Hyg. 46(5) (1952), 521-534.
- L. Dinh, G. Chowell, K. Mizumoto, and H. Nishiura,
Estimating the subcritical transmissibility of the Zika outbreak in the state of Florida, USA, 2016,
Theoret. Biol. Med. Modell. 13(1) (2016) 1-7.
- M.R. Duffy,
Zika virus outbreak on Yap Island, federated states of Micronesia,
N. Engl. J. Med. 360(24) (2009), 2536-2543.
- M. Ehrhardt and R.E. Mickens,
A Nonstandard Finite Difference Scheme for Solving a Zika Virus Model,
unpublished manuscript, 2017.
- M. Farman, A. Akgül, S. Askar, T. Botmart, A. Ahmad, and H. Ahmad,
Modeling and analysis of fractional order Zika model,
Virus 3 (2021), 4.
- D. Gao,
Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis,
Sci. Rep. 6(28070) (2016), 1-10.
- D. Gatherer and A. Kohl,
Zika virus: a previously slow pandemic spreads rapidly through the Americas,
J. Gen. Virol. 97(2) (2016), 269-273.
- C. Gokila and M. Sambath,
Modeling and simulations of a Zika virus as a mosquito-borne transmitted disease with environmental fluctuations,
Int. J. Nonl. Sci. Numer. Simul. (2021).
- A. Haddow,
Twelve isolations of Zika virus from Aedes (Stegomyia) Africanus (Theobald) taken in and above a Uganda forest,
Bull. World Health Organ. 31(1) (1964), 57-69.
- A.D. Haddow, A. J. Schuh, C. Y. Yasuda, et al.,
Genetic characterization of Zika virus strains: geographic expansion of the Asian line age,
PLoS Negl. Trop. Dis. 6(2) (2012), e1477.
- B. Hasan, M. Singh, D. Richards, and A. Blicblau,
Mathematical modelling of Zika virus as a mosquito-borne and sexually transmitted disease with diffusion effects,
Math. Comput. Simulat. 166 (2019), 56-75.
- E.B. Hayes,
Zika virus outside Africa,
Emerg. Infect. Dis. 15(9) (2009), 1347-1350.
- J.L. Helmersson, H. Stenlund, A.W. Smith, and J. Rocklö,
Vectorial capacity of Aedes Aegypti: effects of temperature and implications for global Dengue epidemic potential,
PLoS one 9(3) (2014), 1-10.
- S. Ioos, H.P. Mallet, I.L. Goffart, V. Gauthier, T. Cardoso, and M. Herida,
Current Zika virus epidemiology and recent epidemics,
Medecine et maladies infectieuses 44(7) (2014), 302-307.
- R. Isea and K.E. Lonngren,
A preliminary mathematical model for the dynamic transmission of Dengue, Chikungunya and Zika,
Amer. J. Mod. Phys. Appl. 3(2) (2016), 11-15.
- M. Jagan, M.S. deJonge, O. Krylova, and D.J.D. Earn,
Fast estimation of time-varying infectious disease transmission rates,
PLoS Comput. Biol. 16(9) (2020), e1008124.
- V.L.P. Junior, K. Luz, R. Parreira, and P. Ferrinho,
Zika virus: a review to clinicians,
Acta Médica Portuguesa 28(6) (2015), 760-765.
- W.O. Kermack and A.G. McKendrick,
A contribution to the mathematical theory of epidemics,
Proc. R. Soc. A Math. Phys. Eng. Sci. 115(772) (1927), 700-721.
- M. Khalil, A. Am Arafa, and A. Sayed,
A variable fractional order network model of Zika virus,
J. Fract. Calc. Appl. 9(1) (2018), 204-221.
- M.A. Khan, S.W. Shah, S. Ullah, and J.F. Gómez-Aguilar,
A dynamical model of asymptomatic carrier Zika virus with optimal control strategies,
Nonlinear Analysis: Real World Appl. 50 (2019), 144-170.
- M.A. Khan, S. Ullah, and M. Farhan,
The dynamics of Zika virus with Caputo fractional derivative,
AIMS Math. 4(1) (2019), 134-146.
- M.A. Khan, M. Ismail, S. Ullah, and M. Farhan,
Fractional order SIR model with generalized incidence rate,
AIMS Math. 5(3) (2020), 1856-1880.
- A.J. Kucharski, S. Funk, R.M. Eggo, H.-P. Mallet, W.J. Edmunds, and E.J. Nilles,
Transmission dynamics of Zika virus in island populations:
a modelling analysis of the 2013/14 French Polynesia outbreak,
PLoS neglected tropical diseases 10(5) (2016): e0004726.
- L. Lambrechts,
Impact of daily temperature fluctuations on Dengue virus transmission by Aedes Aegypti,
Proc. Natl. Acad. Sci. USA 108(1) (2011), 7460-7465.
- E.K. Lee, Y. Liu, and F.H. Pietz,
A compartmental model for Zika virus with dynamic human and vector populations,
AMIA Annu. Symp. Proc. 2016 (2011), 743-752.
- V.M.C. Lormeau,
Zika virus, French Polynesia, South Pacific,
Emerg. Infect. Dis. 20(6) (2014), 1085-1086.
- M.H. Maamar, L. Bouzid, O. Belhamiti, and F.B.M. Belgacem,
Stability and numerical study of theoretical model of Zika virus transmission,
Int. J. Math. Modell. Numer. Optim. 10(2) (2020), 141-166.
- M.H. Maamar, M. Ehrhardt, and L. Tabharit,
A nonstandard finite difference scheme for a model of Zika virus transmission,
in preparation.
- R.W. Malone, J. Homan, M.V. Callahan, et al.,
Zika virus: medical countermeasure development challenges,
PLoS Negl.Trop. Dis. 10(3) (2016), e0004530.
- C. Manore, and M. Hyman,
Mathematical models for fighting Zika virus,
SIAM News 49(4) (2016), 1.
- C.A. Manore, R.S. Ostfeld, F.B. Agusto, H. Gaff, and S.L. LaDeau,
Defining the risk of Zika and Chikungunya virus transmission in human population centers of the eastern United States,
PLoS Neglected Tropical Diseases 11(1) (2017), e0005255.
- M. Martcheva,
An Introduction to Mathematical Epidemiology,
Springer, New York, 2015.
- J.P. Messina,
Mapping global environmental suitability for Zika virus,
elife 5 (2016), e15272.
- A.A. Momoh and A. Fügenschuh,
Optimal control of intervention strategies and cost effectiveness analysis for a Zika virus model,
Oper. Res. Health Care 18 (2018) 99-111.
- R.E. Mickens,
Applications of Nonstandard Finite Difference Schemes,
World Scientific, 2000.
- R.E. Mickens,
Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition,
Numer. Meth. Part. Diff. Eqs. 23(3) (2007), 672-691.
- S.C. Mpeshe, N. Nyerere, and S. Sanga,
Modeling approach to investigate the dynamics of Zika virus fever: A neglected disease in Africa,
Int. J. Adv. Appl. Math. Mech. 4(3) (2017) 14-21.
- D. Musso and D.J. Gubler,
Zika virus: following the path of Dengue and Chikungunya?,
Lancet 386(9990) (2015), 243-244.
- D. Musso and D.J. Gubler,
Zika virus,
Clin. Microbiol. Rev. 29(3) (2016), 487-524.
- P.A. Naik,
Global dynamics of a fractional-order SIR epidemic model with memory,
Int. J. Biomath. 13(8) (2020), 2050071.
- P.A. Naik, M. Yavuz, and J. Zu,
The role of prostitution on HIV transmission with memory: A modeling approach,
Alexandria Engrg. J. 59(4) (2020), 2513-2531.
- T.X. Nhan, V.M.C. Lormeau, and D. Musso,
Les infections à virus zika,
Rev. Francoph. des Lab. 2014(467) (2014), 45-52.
- H. Nishiura, R. Kinoshita, K. Mizumoto, Y. Yasuda, and K. Nah,
Transmission potential of Zika virus infection in the south pacific,
Int. J. Infect. Dis. 45 (2016), 95-97.
- E. Okyere, S. Olaniyi, and E. Bonyah,
Analysis of Zika virus dynamics with sexual transmission route using multiple optimal controls,
Scientific African 9 (2020), e00532.
- S.J.A.M. Olaniyi,
Dynamics of Zika virus model with nonlinear incidence and optimal control strategies,
Appl. Math. Inf. Sci. 12(5) (2018), 969-982.
- A.M. Oster,
Interim guidance for prevention of sexual transmission of Zika virus-United States, 2016,
MMWR. Morb. Mortal. Wkly Rep. 65 (2016), 120-121.
- PAHO/WHO from Brazil,
International Health Regulation (IHR), National Focal Point (NFP), PAHO/WHO, 2 March, 2017.
- T.A. Perkins, A.S. Siraj, C.W. Ruktanonchai, M.U. Kraemer, and A.J. Tatem,
Model-based projections of Zika virus infections in childbearing women in the Americas,
Nat. Microbiol. 1(9) (2016), 16126.
- R. Prasad, K. Kumar, and R. Dohare,
Caputo fractional order derivative model of Zika virus transmission dynamics,
J. Math. Comput. Sci. 2023(28) (2023), 145-157.
- R. Rakkiyappan, V.P. Latha, and F.A. Rihan,
A fractional-order model for Zika virus infection with multiple delays,
Complexity, 2019.
- S. Rezapour, H. Mohammadi, and A. Jajarmi,
A new mathematical model for Zika virus transmission,
Adv. Difference Eqs. 2020(1) (2020), 1-15.
- R.G. Sargent,
Verification and validation of simulation models,
J. Simul. 7(1) (2013), 12-24.
- T.W. Scott,
Longitudinal studies of Aedes Aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency,
J. Med. Entomol. 37(1) (2000), 89-101.
- P. Shapshak,
Global Virology I - Identifying and Investigating Viral Diseases,
Springer, New York, 2015.
- M.A. Taneco-Hernández and C. Vargas-De-León,
Stability and Lyapunov functions for systems with Atangana-Baleanu Caputo derivative: an HIV/AIDS epidemic model,
Chaos, Solitons & Fractals 132 (2020), 109586.
- Y.A. Terefe, H. Gaff, M. Kamga, and L. van der Mescht,
Mathematics of a model for Zika transmission dynamics,
Theory Biosci. 137(2) (2018) 209-218.
- J. Tolles and T.B. Long,
Modeling epidemics with compartmental models,
JAMA Guide Stat. Meth. 323(24) (2020), 2515-2516.
- S. Treibert, H. Brunner, and M. Ehrhardt,
A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics,
Math. Biosci. Engrg 19(2) (2022), 1213-1238.
- D. Wang, A. Xiao, and J. Zou,
Long-time behavior of numerical solutions to nonlinear fractional ODEs.
ESAIM: Math. Modell. Numer. Anal. 54(1) (2020), 335-358.
- D. Wang and J. Zou,
Mittag-Leffler stability of numerical solutions to time fractional ODEs,
Numerical Algorithms (2022), 1-35.
- F.L.H. Wertheim, P. Horby, and J.P. Woodall,
Atlas of Human Infectious Diseases,
Wiley-Blackwell, Oxford, 2012.
- Y. Xing and Y. Yan,
A higher order numerical method for time fractional partial differential equations with nonsmooth data,
J. Comput. Phys. 357 (2018), 305-323.
- C. Zanluca,
First report of autochthonous transmission of Zika virus in Brazil,
Inst. Oswaldo Cruz. 110(4) (2015), 569-572.