Bergische Universität Wuppertal
Fachbereich Mathematik und Naturwissenschaften
Angewandte Mathematik - Numerische Analysis (AMNA)
People
Research
Publications
Teaching
Prof. Dr. M. Ehrhardt
D. Shcherbakov, M.Sc.
Lecture course in the Summer Term 2012:
Numerical Analysis and Simulation II: Partial Differential Equations (PDEs)
Exercises / Homework
Exercise Sheets
I. Introduction
1. Classification, Transformation of Variables (
pdf
)
II. Difference Methods for parabolic Differential Equations
2. Difference Approximation, Order of Consistency (
pdf
)
(Lab-Exercise:
Link: Solution of the Heat Equation
,
Matlab-File:
ueb2.m
)
3. l
2
-Stability in the Sense of von Neumann (
pdf
)
4. Tridiagonal Matrices, Discrete Maximum Principle, Stability in Maximum Norm (
pdf
)
III. Difference Methods for elliptic Differential Equations
5. Poisson Equation, Maximum Principle (
pdf
)
(Lab-Exercise:
Link: Solution of the Helmholtz Equation
,
Matlab-File:
ueb5.m
)
6. Lab-Exercise: Poisson Equation (
pdf
)
7. Discretizations of higher Order (
pdf
)
IV. Introduction to the Theory of Sobolev Spaces
8. Distributive Derivative, Sobolev Spaces, Dual Spaces (
pdf
)
9. Inequality of Friedrichs, Inequality of Poincaré, Sobolev Inequality (
pdf
)
V. Variational Formulations of Boundary Value Problems
10. Weak Formulation, Lemma of Lax-Milgram (
pdf
)
VI. The Finite Element Method
11. Stiffness Matrix, Triangulation (
pdf
)
12. Linear Finite Elements, Transformationformula, inverse Inequality (
pdf
)
VII. Introduction to Multigrid Methods
13. The Method of simple Iteration, V-Cycle, W-Cycle, Remainder Projector (
pdf
)
Information Resources for
Matlab
and
Scilab
Matlab PDE Toolbox
The Partial Differential Equation Toolbox
Eine sehr kurze Einführung in die Partial Differential Equation Toolbox von Matlab
Using the Matlab PDE toolbox
The PDE Toolbox - Minicourse
Finite Elemente
Das kleine Finite-Elemente-Skript
, VL-Skript von A. Jüngel, 2004.
Finite Elemente in Scilab: Das Lösen partieller Differentialgleichungen mit Hilfe der FreeFEM-Toolbox
FreeFEM for Scilab
/
SciFreeFEM
Openfem_scilab
OpenFEM
(An Opensource Finite Element Toolbox)
CALFEM
(Computer Aided Learning of the Finite Element Method)
Korrekturen
zum Buch von
Braess
Mehrgitterverfahren
MGNet - Homepage
Multigrid Workbench
(self-guided tour through multigrid algorithms)
An Introduction to Multigrid Methods
(Online-Buch von Pieter Wessling)
MGLab
(interactive environment for experimenting with multigrid algorithms, MATLAB)
A short paper describing MGLab
MUDPACK
multigrid software package (fortran)
Lloyd N. Trefethen,
Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations
, unpublished text, 1996, (now available online).
Some disasters attributable to bad numerical computing (Douglas N.Arnold)
PDELab: Problem Solving Environment for PDE Applications (Purdue University)
NumaWWW : Numerical Mathematics in the WorldWideWeb (TU Darmstadt):
Partial Differential Equations
University of Wuppertal
Faculty of Mathematics and Natural Sciences
Department of Mathematics
Applied Mathematics & Numerical Analysis Group
Last modified:
Disclaimer
ehrhardt@math.uni-wuppertal.de